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C312: Electron Spin Resonance of Doublet 
and Triplet Copper Paramagnets 
 

 Length of Practical: 12 Hours, in pairs 

Pre-Requisites 
 2nd Year Quantum Option 
 S217 Computational NMR Spectroscopy 
 S218 An introduction to Python for Chemists 
 Recommended to those of keen Physical 

Chemistry interest  

Objectives 
 To explore g-anisotropy and construction of the powder ESR spectrum. 
 To introduce the effects of molecular rotational rates on the ESR spectra. 
 To determine the nature of the copper-ligand bond in terms of covalency via applications 

of ligand field theory. 
 To gain experience in the practical aspects of ESR data acquisition and analysis. 

 

Introduction 
     This practical introduces basic considerations for ESR simulations, measurements, and data analysis of two 
Cu(II) molecules: tetraphenylporphyrinatocopper(II) has one unpaired electron and tetra-μ2-
acetatodiaquadicopper(II) has two unpaired electrons that have strong exchange coupling.  The only known 
naturally occurring copper porphyrin molecules are found in the bright red tail feathers of the African touraco 
bird (Musophagidae).  Copper acetate has been used as a shark repellant, in electroplating, and as a starting 
material for CuO nanoparticles. 
 

                       
Scheme  1.  Left is tetraphenylporphyrinatocopper(II), CuTPP, which is S=1/2 and right, tetra-μ2-
acetatodiaquadicopper(II), a.k.a. copper acetate, which is two anti-ferromagnetic coupled spin ½ ions that 
results in S = 0 ground state and S = 1 excited state, separated by exchange coupling. 
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 NMR and ESR have many similarities, e.g.  ℎ𝜈 = 𝑔𝜇஻𝐵 for ESR and ℎ𝜈 =

𝑔𝜇ே𝐵 for NMR.  Here h is Planck’s constant,  is the Larmor frequency, 
g is the electron or nuclear g-factor, B is the Bohr magneton, N is the 
nuclear magneton, and B is the magnetic flux density, or magnetic 
induction, given in units of Tesla. For electrons the spin moment has the 
opposite sense as the magnetic moment, unlike in 1H-NMR.  As result, 
the electron-Zeeman interaction results in negative spin values being 
lower in energy.  For example, S = 1/2 spin systems have ms = -1/2 lower 
than ms = 1/2.  These are also commonly referred to as  and  spin 
states, respectively.  The g-values that are useful for this lab are below. 
 

Table 1. 
Natural  
Abundance spin g-value 

gyromagnetic ratio  
[107 rad s-1 T-1] 

e- 1.0 1/2 -2.0023193 17608.597 
1H 0.999885 1/2 5.58569468 26.75222 

14N 0.99636 1 0.403761 1.9337798 
63Cu 0.6915 3/2 1.484897 7.111791 
65Cu 0.3085 3/2 1.5877 7.6043 

 
Orbital & Spin Angular momentum and derivation of resonant transition energy 

For an electron moving in circle, the magnetic moment is given as μ=IAn, where I is the 
current and A is the area of the circle.  Consider that I=q/T, where q is the charge of an 
electron (-e) and T is revolution time (2πr/v).  The magnetic moment is then  

μ = (-ev/2πr)(πr2)n = (-evr/2)n.  You may know angular momentum defined as the cross 
product of position with respect to the origin about which it rotates and momentum (
 l r p ), with p = mev, the mass of the electron times its velocity.  Thus the angular 

momentum can be re-written as l = rmevn, and using rvn = l/me, we have μ = (-e /2me)l 
(see Dirac §35 for a more general description).  With the Bohr magneton, μB=(-eħ/2me), μ = μB l/ħ.   
     The eigenvectors of angular momentum are spherical harmonics of Ylm, with l = {0,1,2,…} and m = {-l,-

l+1,…l} (often given as Ykq in ESR), where the total angular moment 2 2ˆ ( 1)L lm l l lm  h and the state of 

the system is given by ˆ
zL lm m lm h , not ˆ ˆ 0x ylm L lm lm L lm  .  In contrast, ˆ

xL  and ˆ
yL  

change the state of system, following the ladder operators 𝐿෠ା = 𝐿෠௫ + 𝑖𝐿෠௬  𝑎𝑛𝑑 𝐿෠ି = 𝐿෠௫ − 𝑖𝐿෠௬: 

 𝐿෠±|𝑙, 𝑚௟⟩ = ඥ𝑙(𝑙 + 1) − 𝑚௟(𝑚௟ ± 1)ℏ|𝑙, 𝑚௟ ± 1⟩.  For a single electron l=S=½, so ms ={-½, ½}.  For the 

magnetic field directed along the z direction:   0

0

0 ˆ
ˆ ˆ ˆˆ , , 0e B e B z

x y z

g g B S
H B S S S

B

 


 
      
 
 

h h
.   

   Given eigenstates for the electron of  

ms = ½ =   and ms = -½ =  , 

0 0ˆˆ
2

e B e B
z

g B g B
H S

 
   

h
 and 

0 0ˆˆ
2

e B e B
z

g B g B
H S

 
  


 

h
, we can 

draw the Zeeman effect for the transition 
energy as a function of increasing magnetic 
field, shown to the right →  : 
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Spin System Operators 
Recall the Pauli spin matrices (problem 12.7 in Atkins & dePaula, Physical Chemistry, 8th ed.; Dirac §37): 

0 1

1 0x
 

  
 

   
0

0y

i

i


 
  
 

  
1 0

0 1z
 

   
   0

1 0

0 1


 
  
 

 

The matrix σ0 is also called the unit operator or just 1.  To obtain the basic spin operators for an S=1/2 
molecule these matrices are multiplied by one-half times hbar.   

𝑆መ௫ = ℏ ൭
0 1

2ൗ

1
2ൗ 0

൱  𝑆መ௬ = ℏ ൭
0 −𝑖

2ൗ

𝑖
2ൗ 0

൱  𝑆መ௭ = ℏ ൭
1

2ൗ 0

0 −1
2ൗ

൱  𝑆መା = ℏ ቆ
0 1

2ൗ

0 0
ቇ  𝑆መି = ℏ ቆ

0 0
1

2ൗ 0ቇ   

In the case of S = 1/2, these operate as       

ˆ ˆ ˆ

1 1 1

2 2 2
1 1 1

2 2 2

x y zS S S

i

i

   

    

 

For this practical, you may be interested the matrices for I = 1 (14N) and I = 3/2 (63/65Cu), which are included 
in Appendix A.  ESR is fundamentally different from NMR in that the spin systems approximately follow the 
pictorial comparison to the right.  In the case of an electron spin 
distributed over many nuclei, the ESR measurement is only the 
sum of individual electron-nuclear pair interactions, not 
between nuclear spins. To form the overall spin operator of the 
spin system in the case of one proton (I = ½) and one electron (S 
= ½), one would need to redefine the spin operators in the total 
dimension of known as Hilbert space by calculating a direct 
product (a.k.a. Kronecker product or outer product).  Here is the corresponding spin operator for the electron 
in such a spin system of a proton and electron. 

10 0 02
1 10 0 0 01 02 2ˆ ˆ

1 0 1 10 0 0 02 2
10 0 02

x xS s

 
 
                    
  
 

1 . 

 
   Note that the matrix is 4 x 4 and its basis vector contains N = 4 values [Exercise, give an appropriate basis 

vector  ___   ___   ___   ___ ] .  The basis vector for N spins of a single spin value is given as (2S+1)N, while 
multiple types of spin values (Sa=3/2, Sb=6, Sc=7/2, etc.) have dimensions of (2Sa+1)Na (2Sb+1)Nb(2Sc+1)Nc…, 
where the total basis is formed from the direct product of all spins considered in the system.  The examples 
of this practical are CuTPP and copper acetate.  If we limit CuTPP to only considering the electron, 63/65Cu, and 
the first coordination sphere, 14N, the Hilbert space dimension is (2(1/2)+1)(2(3/2)+1)(2(1)+1)4 = 648 or 648 x 
648 elements.  For copper acetate the only significant spins are the electrons and copper nuclei, or 
(2(1)+1)(2(3/2)+1)2 = 48.  Hilbert space calculations are sufficient for CW-ESR measurements focused on 
describing the time-independent Hamiltonian of a spin system.  For consideration of relaxation dynamics, 
pulsed ESR, slow-motion and kinetics one would expand the basis to Liouville space with dimensions of 
(2S+1)N x (2S+1)N for N spins of a single value.  This is an advanced topic covered Trinity term magnetic 
resonance (P. Hore). 
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ESR Spin Hamiltonian 
The transition frequencies and transition probabilities of ESR derive from the spin Hamiltonian.  For electron 
k, neighboring electron m, and nucleus i, a description of the spin Hamiltonian is as follows:   

𝐻 =  ෍ 𝐽௠௞𝑆௠̅

௠

𝑆௞̅ + ൛𝑆௞̅𝐷෩௞௠𝑆௞̅ൟ + 𝜇஻𝑆௞̅𝑔෤𝐵ሬ⃑ ଴

+ ෍ 𝑆௞̅𝐴ሚ௜𝐼௜̅ − ෍ 𝜇ே𝑔ே𝐵଴𝐼௭̅௜

௜

+ ෍ 𝐼௭̅௜𝑄෨௜𝐼௭̅௜

௜

+ ෍ 𝑆௞̅𝐷෩௞௠𝑆௠̅ + 𝑆̅𝐶ሚ𝐽 ̅

௠௜

 

These terms are ordered according to their typical magnitude: exchange, fine structure splitting or zero-field 
splitting (ZFS), electron Zeeman interaction, hyperfine interaction (HFC), nuclear Zeeman interaction, nuclear 
quadrupole interaction (QPI), electron-electron dipolar interaction, and finally, spin rotation. 
 
The form of these interaction tensors are as follows (pre-factors omitted), similar to the Dot Product: 
 

Linear        (Zeeman)  ൣ𝑆መ௫ 𝑆መ௬ 𝑆መ௭൧ ൥

𝑔௫௫ 𝑔௬௫ 𝑔௭௫

𝑔௫௬ 𝑔௬௬ 𝑔௭௬

𝑔௫௭ 𝑔௬௭ 𝑔௭௭

൩ ൦

𝐵ሬ⃑ ௫

𝐵ሬ⃑ ௬

𝐵ሬ⃑ ௭

൪ = 𝑔௫௫𝑆መ௫𝐵ሬ⃑ ௫ + 𝑔௬௫𝑆መ௬𝐵ሬ⃑ ௫ + ⋯ 

 

Bilinear       (HFC) ൣ𝑆መ௫ 𝑆መ௬ 𝑆መ௭൧ ቎

𝐴௫௫ 𝐴௬௫ 𝐴௭௫

𝐴௫௬ 𝐴௬௬ 𝐴௭௬

𝐴௫௭ 𝐴௬௭ 𝐴௭௭

቏ ቎

𝐼መ௫
𝐼መ௬

𝐼መ௭

቏ = 𝐴௫௫𝑆መ௫𝐼መ௫ + 𝐴௬௫𝑆መ௬𝐼መ௫ + ⋯ 

 

Quadratic   (ZFS, QPI) ൣ𝑆መ௫ 𝑆መ௬ 𝑆መ௭൧ ቎

𝐷௫௫ 𝐷௬௫ 𝐷௭௫

𝐷௫௬ 𝐷௬௬ 𝐷௭௬

𝐷௫௭ 𝐷௬௭ 𝐷௭௭

቏ ቎

𝑆መ௫

𝑆መ௬

𝑆መ௭

቏ = 𝐷௫௫𝑆መ௫
ଶ + 𝐷௬௫𝑆መ௬𝑆መ௫ + ⋯ 

 
  The Cartesian spin operators [𝑆෡ ௫ 𝑆መ௬ 𝑆መ௭] & [𝐼መ௫ 𝐼መ௬ 𝐼መ௭] define the 
eigenbasis and as discussed on page 6-3, may contain 10s to > 1000s of 
matrix elements.  Next, calculation of eigenvalues and eigenvectors is 
performed to characterize the energy level splittings of the spin system. 
The orientation of the molecule is accounted for by the rotation of the 
interaction tensors with respect to the magnetic field.  A sufficient number 
of orientations of the molecule with respect to the magnetic field allows 
calculation of the powder pattern of the ESR spectrum.  Such a set of 
orientations is shown on the right.  Each interaction tensor of the spin 
Hamiltonian may be rotated into its principle axis, yielding three principle 
values on the diagonal, such as gx, gy, and gz. 
 

Electron Zeeman Interaction    0ˆ
kEZ BH S g B  

For an isotropic spin or a single orientation of a molecule the electron Zeeman interaction is  
ˆˆ

zS  , where  is the precession frequency in radians per second of the electron, 0B   .   
 
g-shift   
  In NMR you have seen that a shift in the resonance position of signals, following 0

ˆ ˆ(1 )NZ ZH B I    , where 

the overall shift is local local
p d N R e i            (see 3rd yr NMR notes of C.R. Timmel).  In ESR there 

are similar shifts to the g-value such that its observed, or effective, value is diagnostic of several contributions:
( ) /free RMC GC SOC OZ

eff eg g g g g    , with 0
ˆˆ

EZ B eff ZH g B S .  The first is the term, ge, is that of the free 
electron and some physicists study it exclusively, (with) Q.E.D.  A relativistic mass correction, gRMC, is applied 
due to the orbital effects.  Then there is a gauge correction, gcg , concerning the location of the g-tensor 
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within the molecule (usually placed in the center of electron density).  Finally, there is the spin-orbit coupling 
term, which has the largest contribution for transition metals, and may also include an orbit-Zeeman 
component if orbital angular momentum is unquenched.  One may calculate the contribution for spin-orbit 
coupling via the Landé g-factor, and a more extensive discussion with respect to anisotropy is below.  
 

 1 ( 1) ( 1)
1

2 ( 1)J

j j s s l l
g

j j

    
 


. 

 
Anisotropy in the g-tensor 
While isotropic chemical shift values are usually found in solution state NMR, the chemical shift anisotropy 
(CSA) in solid state NMR is analogous to g-value anisotropy of solid state ESR as both are linear tensor 
interactions.  In NMR it is  0 0

ˆ ˆ ˆ ˆ ˆ( , , ) 1NZ N N N N x y zH g I B g I I I B         , or in the full matrix: 

0

0

0

1
ˆ ˆ ˆ ˆ( , , ) 1

1

xx xy xz x

NZ N N x y z yx yy yz y

zx zy zz z

B

H g I I I B

B

  
   

  

   
          

     

 

 
For a disordered sample of fixed orientations, we can use polar coordinates, [Bx By Bz] = B0*[nx ny nz], where 
direction cosines are nx = sinθcosϕ, ny = sinθsinϕ, and nz = cosθ.  The anisotropic electron Zeeman interaction 
is as follows. 
 

0
ˆ ˆ ˆˆ ( , , )

xx xy xz x

EZ B x y z yx yy yz y

zx zy zz z

g g g n

H B S S S g g g n

g g g n


   
        

     

 

 

For a simple S=1/2, with ,   basis, this may be 
written in a matrix form as 
 

0
2 2 2ˆ

2 2 2

y yyx xxz zz

EZ B
y yyx xx z zz

in gn gn g

H B
in gn g n g



 
 

 
 

  

 

 
By solving the secular equation (determinant), the 
effective g-value is found as [ challenge: do it yourself ] 
 

2 2 2 2 2 2 2 2 2cos sin sin sin cosx y zeff
g g g g        

 
In the blue box are plots of effective g-values showing the 
dependence B0 field orientation for a highly anisotropic low-spin ferric haem.   
 
g-tensor Categories: isotropic gx = gy = gz 
 axial  gx = gy ≠ gz or gx ≠ gy = gz  
 orthorhombic  gx ≠ gy ≠ gz 

You will explore these g-value tensors shapes on Day 1. 
 

For an axial g-tensor the effective g-value reduces to 2 2 2 2 2sin cos
eff

g g g   P . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Isotropic, axial, or orthorhombic? ____________ 

What are the limiting g-value(s)? ___ ,  ___ ,  ___ 
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Spin-orbit interaction as a source of g-matrix anisotropy 
The spin-orbit interaction is most often responsible for the anisotropy of the g-tensor, noting orbital 

contributions of different nuclei proportional to Z4 (Se > S > O).  The electron Zeeman interaction becomes   

 0 0
ˆ ˆˆ ˆ ˆ

EZ e B eH B B L g S L S          

For an electron in a p-orbital,      1
1,1 1, 1 , 1,1 1, 1 , 1, 0

2 2 2
x y z

i i
p p p


        with a 

basis of ,l m . The angular momentum operators lx, ly, and lz for the p and d orbitals, operate as follows: 

 Table 2. lx ly lz 

|px⟩ ≡ |x⟩ 0 -i|z⟩ i|y⟩ 

|py⟩ ≡ |y⟩ i|z⟩ 0 -i|x⟩ 

|pz⟩ ≡ |z⟩ -i|y⟩ i|x⟩ 0 

    
|dx2-y2⟩ ≡ |x2-y2⟩ -i|yz⟩ -i|xz⟩ 2i|xy⟩ 

|dz2⟩ ≡ |z2⟩ -i√3|yz⟩ i√3|xz⟩ 0 

|dxy⟩ ≡ |xy⟩ i|xz⟩ -i|yz⟩ -2i|x2-y2⟩ 

|dxz⟩ ≡ |xz⟩ -i|xy⟩ i|x2-y2⟩-i√3|z2⟩ i|yz⟩ 

|dyz⟩ ≡ |yz⟩ i|x2-y2⟩+i√3|z2⟩ i|xy⟩ -i|xz⟩ 

 

 

ℋ෡ௌை = 𝜁𝐿෠ ⋅ 𝑆መ  is for p-orbitals:  
 
 
and for d-orbitals (ↆ): 

Table 4. |x2-y2,α⟩ |xy,α⟩ |yz,α⟩ |xz,α⟩ |z2,α⟩ |x2-y2,β⟩ |xy,β⟩ |yz,β⟩ |xz,β⟩ |z2,β⟩ 

⟨x2-y2,α| 0 -i 0 0 0 0 0 +i/2 +1/2 0 

⟨xy,α| +i 0 0 0 0 0 0 +1/2 -i/2 0 

⟨yz,α| 0 0 0 +i/2 0 -i/2 -1/2 0 0 −𝑖 √3
2

ൗ  

⟨xz,α| 0 0 -i/2 0 0 -1/2 +i/2 0 0 +√3
2

ൗ  

⟨z2,α| 0 0 0 0 0 0 0 +𝑖 √3
2

ൗ  −√3
2

ൗ  0 

⟨x2-y2,β| 0 0 +i/2 -1/2 0 0 +i 0 0 0 

⟨xy,β| 0 0 -1/2 -i/2 0 -i 0 0 0 0 

⟨yz,β| -i/2 +1/2 0 0 −𝑖 √3
2

ൗ  0 0 0 -i/2 0 

⟨xz,β| +1/2 +i/2 0 0 −√3
2

ൗ  0 0 +i/2 0 0 

⟨z2,β| 0 0 +𝑖 √3
2

ൗ  +√3
2

ൗ  0 0 0 0 0 0 

 
 For the d-orbitals of transition metal it is conventional to use the 
magic pentagon to determine coefficients from the spin orbit 
coupling, as is shown in Appendix A.2.  Application of the spin-
orbit coupling of Cartesian d-orbitals makes use of their 
definitions in (|L, mL〉): 

|𝑑௭మ⟩ = |2,0⟩, 

|𝑑௫௭⟩ =
−1

√2
(|2,1⟩ − |2, −1⟩), ห𝑑௬௭ൿ =

𝑖

√2
(|2,1⟩ + |2, −1⟩) 

ห𝑑௫మି௬మൿ =
1

√2
(|2,2⟩ + |2, −2⟩), ห𝑑௫௬ൿ =

−𝑖

√2
(|2,2⟩ − |2, −2⟩) 

Table 3. |x,α⟩ |y,α⟩ |z,α⟩ |x,β⟩ |y,β⟩ |z,β⟩ 

⟨x,α| 0 -i/2 0 0 0 1/2 

⟨y,α| i/2 0 0 0 0 -i/2 

⟨z,α| 0 0 0 -1/2 i/2 0 

⟨x,β| 0 0 -1/2 0 i/2 0 

⟨y,β| 0 0 -i/2 -i/2 0 0 

⟨z,β| 1/2 i/2 0 0 0 0 
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Mixing of excited states in spin-orbit interaction 
In the case of CuTPP, the Cu(II) free ion is 2D with 2T2g orbitals 
of Oh split in D4h to 2B2g (dxy) above and 2Eg (dxz, dyz) below.  The 
2Eg state of Oh symmetry splits in D4h tetragonal elongation to 
2B1g (dx2-y2) above and below, 2A1g (dz2).  By looking at the 
character tables, one will see that spin rotation along the z-
axis (Rz) mixes excited states of x2-y2 (b1g) and xy (b2g) 
involving a promotion of an electron from the lower d-orbital 
to dx2-y2.  Thus we have a spin-orbit contribution about the z-

axis seen in the magic pentagon with n = 8 following the 
cyan line along bottom of the pentagon or by multiplying the 
D4h point group irreducible representations B1g (x2-y2) * A2g 
(Rz) = B2g (direct product of symmetry comp.): 

𝑔௭ = 𝑔௘ −
𝑎ଶ𝒏𝜆

𝐸௫మି௬మ−𝐸௫௬

 

An equation for the g-value represented by rotation in the x-axis and y-axis based on pentagon with n = 2 
following either green line from the x2-y2 point to xz or yz of the pentagon or by multiplying the D4h point 
group irreducible representations B1g (x2-y2) * Eg (Rx,y) = Eg: 

𝑔௫ = 𝑔௬ = 𝑔௘ −
𝑎ଶ𝒏𝜆

𝐸௫మି௬మ−𝐸௫௭,௬௭

 

Here the spin orbit coupling is λ = ±ζ/2S with the free ion value of 1830cm    for copper.  The covalency 

of the ligand is accounted for with value a2 (a2 = 1 is fully ionic) which is further developed in post-lab question 
Q1c.  These g-value equations may employ doublet states described as |Ψା⟩ 𝑎𝑛𝑑  |Ψି⟩, composed of other 
spin orbitals (|ml,ms〉).  Extensive unquenched orbital angular momentum and non-canonical coordination 
(mix of d-orbital character) may lead additional terms and computational approaches.   

D4h E 2C4 (z) C2 2C'2 2C''2 i 2S4 h 2 v 2 d linear, 
Rotations quadratic cubic 

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 - x2+y2, z2 - 

A2g +1 +1 +1 -1 -1 +1 +1 +1 -1 -1 Rz - - 

B1g +1 -1 +1 +1 -1 +1 -1 +1 +1 -1 - x2-y2 x2-y2 - 

B2g +1 -1 +1 -1 +1 +1 -1 +1 -1 +1 - xy - 

Eg +2 0 -2 0 0 +2 0 -2 0 0 (Rx, Ry) (xz, yz) - 

A1u +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 - - - 

A2u +1 +1 +1 -1 -1 -1 -1 -1 +1 +1 z - z3, z(x2+y2) 

B1u +1 -1 +1 +1 -1 -1 +1 -1 -1 +1 - - xyz 

B2u +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 - - z(x2-y2) 

Eu +2 0 -2 0 0 -2 0 +2 0 0 (x, y) - (xz2, yz2) (xy2, 
x2y), (x3, y3) 
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Hyperfine Interaction, °ˆ i ikHFI
i

H S A I  

  The electron precession frequency is dependent on the total 
magnetic field, and the spins of surrounding nuclei contribute 
to the total field due to their magnetic moments.  Thus the sum 
and difference of the local hyperfine field(s) and main magnetic 
field results in a splitting, called a hyperfine interaction.  The 
spatial distribution for the hyperfine coupling of a nucleus with 
the unpaired electron is called an A-tensor.  An example of 
several A-tensors of an organic radical is shown to the right, with 
proportional ellipsoids plotted at the location of the nucleus 
positions.  With the relation of the g-tensor and A-tensors to the 
molecular frame, the structure of unknown paramagnetic 
molecules may be determined.   
   The full hyperfine term is partitioned between through-space (dipolar) components and nuclear overlap 
(contact) components.  For an axial hyperfine,  , , 2A a T T T    , where a is the isotropic hyperfine and 

T is the dipolar component.  The three elements, [-T, -T, 2T], represent the diagonal of the 3x3 hyperfine 
matrix.  An orthorhombic hyperfine tensor may be parameterized by rhombicity, δ, such that the expression 
is  (1 ), (1 ), 2A a T        .  As in g-values, hyperfines are measured as effective values.  The intrinsic 

hyperfine is Aint = ge*Aeff/geff.  Likewise, comparison of hyperfine values for metal centers of different spin 
value should be scaled by 1/2S.  For organic radicals of g~ge, the hyperfine couplings are often reported in 
Gauss.  However the common unit is MHz.  The conversion of Gauss to MHz is 1 G = 2.8 MHz. 
 
Dipolar Hyperfine Interaction 
   The dipolar hyperfine of ligand nuclei and the paramagnetic electrons is almost always too weak to observe 
in CW-ESR and it requires high-resolution, advanced techniques such as Electron-Nuclear Double Resonance 
(ENDOR) and Electron Spin Echo Envelope Modulation (ESEEM), which are not covered in this practical.  The 
anisotropic component of the hyperfine tensor, T, is given in its simplest form as a single point-dipole for the 
electron and nucleus distance, with respect to the magnetic field: 

20
3

, (3cos 1)
4

e B n N
dip

g g
T A T

r

  



  

h
 

   The total hyperfine is then the sum of Aiso and Adip, with θ defining the DC magnetic field and electron-
nucleus vector.  A convenient relation for 1H nuclei is Adip = (1/r3)*(3cos2θ-1)*79 MHz.  
 
Isotropic Hyperfine Interaction 
   In the fast-tumbling regime of an ESR sample, only the isotropic, or average, hyperfine coupling is defined 
in the ESR spectrum.  The most basic formula for the hyperfine interaction is then HHF=aI∙S.  These strongly 
coupled nuclei split the ESR resonances of the electron according to Pascal triangle for identical hyperfine 
couplings, according to the rule 2nI+1, where n is the number of nuclei coupling to the electron and I is the 
nuclear spin number. 
   Fermi-Contact in hyperfine couplings is dependent on the amount of spatial overlap of the unpaired 
electron(s) and the nucleus.  An equation for the hyperfine coupling of one electron in the s-orbital of a 
nucleus is below, with |Ψo|2 being the spin density at the nucleus and ρ as the fraction of an electron and 
1811 MHz being the isotropic hyperfine for a complete electron in an s-orbital of 14N: 

20
0

2

3iso e B n NA g g
h


   , = ρ(1811 MHz) 

A more extensive analysis of isotropic 14N is possible isotropic hyperfine, where the contributions to of a full 
electron in 2s and 2p are considered separately.  They differ by a factor 33, given the negligible overlap of the 
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2p orbital (Hartree, et al., 1948).  An extensive analysis of haem 14N hyperfine has been used to make 
arguments about the hybridization of 14N, e.g. for sp2, ρ(2s)=2*ρ(2p) (Scholes, et al., 1982). 
 
 

Zero-Field Splitting, ° kmk kS D S  

In the case of copper acetate, a basic spin system description combines an 
anisotropic g-tensor, a large hyperfine interaction of the 63,65Cu nuclei, zero-field 
interactions, and exchange.  Zero-field splitting will be considered first.  In copper 
acetate this involves primarily the singly-occupied dx2-y2 orbitals of the two ions.  
The energy of two spin dipoles is conventionally written as 

  1 10 1 2
3 5

3
4

E
r r




  
   

 

μ r μ rμ μ
 , and substituting ˆ

B S g , this is 

converted to the zero-field splitting Hamiltonian (also dipole hyperfine, 𝐼መ ∙ 𝑆መ):  

  1 22 2 1 2
3 5

ˆ ˆˆ ˆ
ˆ 3

4ZFS B

S SS S
H

r r

 


    
 
 

r r
g  , or in a more compact version 

ˆ ˆˆ
ZFSH SDS % .  In the pre-lab exercise 4b, a triplet spectrum is given with points demarcated X, X’, Y, Y’, Z, 

and Z’, where the primed and unprimed letters represent two overlapping powder patterns correspond to 
the ms=-1ms=0 and ms=0  ms=1 transitions.  These correspond to the unique directions of the zero-field 

splitting tensor, 

0 0

0 0

0 0

X

D Y

Z

 
   
  

% .  Using a definition of the zero-field splitting in terms of axial and 

rhombic components, X, Y, and Z can be redefined as -
1

X
3

D E  , -
1

Y
3

D E  , and -
2

Z
3

D  .  Thus 

the energy splitting of Z and Z’ is 2D and if E = 0, the energy splitting of X,Y and X’,Y’ is D, i.e. ZFS is axial.  If E 
≠ 0, the splittings of X to X’ and Y to Y’ are D ± E/3 and ZFS is orthorhombic. By adding an isotropic Zeeman 
interaction, with anisotropy defined by the ZFS tensor, the zero-field splitting term is expanded in the zero-
field basis |S,MS〉: {(|1,+1〉-|1,-1〉)/√2, (|1,+1〉+|1,-1〉)/√2, |1,0〉 } shown below, i.e. these states are linear 

combinations of the high-field basis, {|1,+1〉, |1,-1〉, |1,0〉} 

0 0

0 0

0 0

1

3
1ˆ
3

2

3

B z B y

ZFS B z B x

B y B x

D E g B n ig B n

H g B n D E g B n

ig B n g B n D

 

 

 

   
 
   
 
  
 

 

Zero-field Hamiltonian including Zeeman interaction, in the zero-field basis. 
 
CW-ESR Signal amplitudes  
ESR of thermally isolated spin manifolds are proportional to the bulk magnetization of the paramagnetic 
centers in the sample, following the Curie Law.  

2 2
0

0 0

( 1)

3 B

B S S
N

k T







h
       (1) 

Cu

O O

OO

Cu

O O

OO

OH2H2O

CH3

CH3H3C

H3C
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Here, χ0 is the magnetic susceptibility, N0 is the number of spins, γ is the magnetogyric ratio, B0 is the external 
magnetic field, S is the spin number and kB is the Boltzmann constant and T is temperature.  In this sense, ESR 
is a quantitative technique.  However quantitation in ESR often has an error of at least 3-10% due to 
instrumentation and sample preparation concerns.  Integration of the ESR spectrum twice will provide a bulk 
magnetization value.  An essential feature of Eqn. 1 is that the signal is inversely proportional to temperature 
and exactly proportional to the number of spins, N0.  In the absence of complicating factors such as thermal 
population of low-lying excited states, it is straight-forward to quantify the number of spins of a given species 
with a standard that fills the resonator active volume in the same way.  For example, one common standard 
is a sample of 1 mM ethylenediaminetetraacetato-
copper(II), a.k.a. CuEDTA, at pH = 4.0 in solution with about 
30% glycerol.  The signal amplitudes are also proportional 
to the Boltzmann populations of the spin levels.  For an 
S=1/2 spin, or doublet, there are only two spin levels.  
However, in higher-spin molecules, e.g. Mn(II) is most often 
S = 5/2 with mS = ±1/2, mS = ±3/2 and mS = ±5/2 spin 
manifolds, temperature can dramatically affect the 
spectrum by altering the relative intensities of transitions 
between spin manifolds.   
   While the overall ESR signal is proportional to the static 

magnetic susceptibility, 0 , an ESR signal is described in 

terms of the dynamic susceptibility, i     , of the 

ESR sample.  The dynamic susceptibility of isolated electron 
spins has two components that are dispersion and 
absorption, respectively: 

 
 

2
1 0 0 2

22 2 2
2 0 1 1 21

B T

T B TT

   


  


 

  
            (2a)               

 
1 0 2

22 2 2
2 0 1 1 21

B T

T B TT

 
  

 
  

           (2b)  

The ordinate of a standard field-modulated ESR spectrum is dχ″/dB, i.e. it reports the derivative of absorption 
due the fact CW-ESR employs phase-sensitive detection by means of modulating the DC magnetic field (Pre-
lab Q3).  In equations 2a and 2b, 0 is the central resonant frequency and  is a frequency +/- 0, where  = 
2π*ν(MHz) is angular frequency in units of radians per second.  B1 is the applied microwave field strength 
(orthogonal to the main magnetic field, B0) and T1 and T2 are the spin-lattice and spin-spin relaxation times.  
For ESR spin systems it is most-often the case that spin-spin relaxation (T2 is generalized in practice to Tm, the 
phase memory time) is too fast for FID detection like NMR, especially at room temperature, hence CW-ESR 
has remained an essential ESR measurement technique for more than 70 years!  If the microwave field 
strength is too great with respect to the relaxation rate, the ESR signal will be saturated because a significant 
number of spins have not completely returned to thermal equilibrium prior to measurement.  It follows from 
Eqns. 2, that a saturation factor, s, can be determined from the relaxation rates of T1 and T2 and the 
microwave field magnetic induction, B1. 

2 2
1 1 2

1

1
s

B T T



      (3) 

Eqn. 2b may be combined with some instrumental concerns to yield the signal voltage. 

0sV Q PZ                      (4) 
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The signal voltage (Vs) is proportional to the absorption of microwaves by the sample, χ, the filling factor of 
the resonator with sample (η), the resonator Q-factor and the square of microwave power (P) multiplied by 
the characteristic impedance of the transmission line (Z0).  The Q-factor is defined as 2π*energy 
stored/energy released per cycle, and it is a widely applicable property used in many diverse fields, such as 
laser cavities (e.g. Q-switching) and mechanical resonators (e.g. carbon nanotubes and tuning forks).  
   ESR intensities of thermally populated spin states, e.g. anti-ferromagnetic triplet states, often employ the 
Bleaney-Bowers equation in analysis, k is the Boltzmann constant, T is temperature modified by Weiss to 
include intermolecular interactions with θ, J is the exchange coupling for the singlet-triplet gap, and Nα is 
temperature independent paramagnetism.  Note, the temperature of maximum susceptibility is about J/k. 

                                                   
   There are a few other instrumentation parameters that the effect signal voltage.  One is the receiver gain, 
which multiplies the voltage prior to digitization.  Commercial spectrometers provide field modulation rates 
between 10 to 100 kHz and the signal amplitude has a linear dependence on modulation amplitudes in the 
available range of 0.01 and 20 Gauss, regardless of frequency. 
   As B1, the oscillating microwave field, is perpendicular to B0, the DC magnetic field, the signal amplitude of 
a transition is proportional to the population difference times the square of the matrix element:  
 IESR(a.u.) ∝ (pMs’,MI’ - pMs,MI)|〈MS′,MI′|ŜX|MS,MI〉|2  with the ESR selection rules of ΔMS=1 and ΔMI=0. 

  
Figure 1.  Representative energy level diagrams (spin Hamiltonian eigenvalues) for the Zeeman field effect 
on a single tetragonal 63Cu, left S = 1/2, and exchange coupled di-63Cu, right S = 1, for the sweep range of a 
basic X-band electromagnet.  The high-field representation of MI, MS values is provided to the right of each. 
Exercise: At X-band, the resonator frequency is often 9.4 GHz, so ΔE/h = 9.4 GHz. What is the length of that 
frequency difference on the y-axis of the lefthand plot? __________ mm.  If you draw the vertical length 
from the upper red lines to the lower red lines, what field does the transition occur? __________ mT.   

___________Materials__________ 

>/= 10L of liquid nitrogen in 60L dewar 

Small dewar of liquid nitrogen for freezing samples 

Two ESR samples flame-sealed in Wilmad 707-SQ-250M, (3mm I.D. x 4 mm O.D.) quartz tubes: 

   a. 200 uL of 8 mM CuTPP in toluene 

   b. powder of copper acetate 

𝜒଴ =  
𝑁଴𝑔ଶ𝜇஻

ଶ

3𝑘(𝑇 − 𝜃)
×

1

[1 + 𝑒ିଶ௃ ௞்⁄ 3⁄ ]
+ 𝑁ఈ  
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Pre-lab Assessment 

Prior to answering the Prelab questions read through the practical sections and review magnetic 
resonance course notes to clarify the sequence of work and appropriate theory. 

 

 

Q1. Why is ESR still mostly measured by continuous-wave spectrometers, the instrument 
design that NMR stopped using ca. 50 years ago? 

Q2.   The following diagram is for an isotropic S=1/2, I=1/2 spin system with the electron 
Larmor frequency (mw/2π) as indicated.  In this case, the hyperfine splitting can be written 

ASzIz.  For A=3.4 MHz, draw the levels for the en, en, en, and en states in boxes 1 & 
2 and enter the calculated energies in boxes 3, 4, 5, & 6.  This nomenclature is that mS=1/2 is 

e, mS=-1/2 is e, mI=1/2 is n, mI=-1/2 is n.  Indicate the difference in frequency for the two 
allowed ESR transitions: ______________ MHz. 
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Q3.   For a sample containing unpaired electrons, what are situations where you might 
measure both the ESR and magnetic susceptibility using a SQUID magnetometer? 

Q4.   CW-ESR spectra most-often appear as a derivative.  The external field amplitude is modulated 
over a small range by a set of coils, typically at 100 kHz.  This allows separation of the ESR signal from 
microwave source noise  1[ ]frequency  .  The modulation reference frequency (Ref) is mixed with 

signal (Sig), where the relative phase θ gives this method its name, phase-sensitive detection =

     Sig Ref Sig Ref Sig Ref0.5* cos cosAmp Amp t t             .  The sum frequency is filtered-out. 

Below, the modulated signal amplitudes are at point a.,  modSig( ) *sina a t , at point b., 

 modSig( ) *sin 2b b t , and at point c.,  modSig( ) *sinc c t   .  The sine wave signal is rectified, given 
a low-pass filter and digitized, leading to the signal voltage. 

 
Given the absorption spectra on the left, draw the detected signals on the right: 
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DAY 1 – COMPUTER-BASED EXERCISES 
Simulation Exercises, part I 
Using a computer provided to run an EasySpin 
toolbox installed in MatLab, or your own laptop, 
perform the following simulations to build towards 
understanding the spectral features of the samples 
measured in the ESR practical.  EasySpin is a package 
of routines that is freely available from 
http://www.easyspin.org.  Use of this software will 
allow you to develop a qualitative understanding of 
ESR simulations and provide guidance for theoretical 
aspects of ESR.  These exercises utilize the EasySpin 
functions pepper for solid state ESR simulations 
and the function chili for slow motional ESR.  See 
Appendix C for plotting code.  For questions 1-to-5, 
you may use the GUI provided (EPRpractical.m) 
and/or any pre-written scripts in the ESR practical 
student directory; however, the ability to write your 
own scripts is an essential skill in ESR spectroscopy.  
You can save plots and collect them in a MS Word document for post-lab discussion. 

 
1.  Perform representative X-band simulations (9.5 GHz) with g-tensors that are characterized as 
        a.  isotropic     --  1 resolved g-value 
        b.  axial      --  2 resolved g-values 
        c.  orthorhombic    --  3 resolved g-values 

% isotropic simulation 
clear all; clc;         % workspace, commands 
sys.S = 1/2;      % spin quantum number 
sys.g = [2.0023 2.0023 2.0023]; % isotropic g-tensor, starting point 
sys.lw = 0.5;    % linewidth in mT 
exp.mwFreq = 9.5;   % microwave source frequency in GHz 
exp.Range = [325 350];  % field sweep range in mT 
opt.Method = ’perturb’; 
[x,y] = pepper(sys,exp,opt); % run calculation with output variables 
figure(1); clf; plot(x,y)       % basic plot 

     See plotting code on last page of Appendix C for more plotting tips.  Save your spectra.   
 
2.  With g = [1.999 2.0023 2.0068] and a Gaussian linewidth of 2 mT, what is the minimum microwave source 
frequency to resolve the g-tensor?  Why would you want to plot on a g-value axis instead of a field axis?  You 
might use this for loop:   the following is useful  ℎ 𝜇୆ ≅ 71.447735 mT GHz⁄⁄  
freqs=10:10:100;              % array of frequencies (start:step:end) 
nf=numel(freqs);              % number of values in array 
for ii=1:nf 
    exp.mwFreq=freqs(ii); 
    L=71.447729*exp.mwFreq/max(sys.g)-5*(sys.lw); 
    R=71.447729*exp.mwFreq/min(sys.g)+5*(sys.lw); 
    exp.Range=[L R];    % Range is scaled to frequency 
    [x,y]=pepper(sys,exp,opt);       % perform calculations 
    Y(:,ii)=y’/max(y)+ii*0.25;  % y-data is saved as a 2D array 
    X(:,ii)=71.447729*exp.mwFreq./x; % x-data is saved as a 2D array 
    text(1.985,ii*0.25+0.09,num2str(freqs(ii))); hold on; % label each trace 
end 
       % additionally, after plotting X,Y: 
set(gca,’xdir’,’reverse’);   % reverses x-axis direction as g-values are  1/B0 
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3. For the axial case of g = [2.05 2.05 2.2], perform a simulations with a linewidth of 0.1 mT for a) the g-tensor 
alone, b) with a 100% 63Cu hyperfine A(63Cu) = [-90 -90 -630]/MHz;  c) with a natural abundance of Cu.  d) For 
the 100% 63Cu case, use simulations of single crystal orientations to assign peaks at X-band (9.5 GHz) and W-
band (94 GHz) as shown below.  Note that if you make your own total simulation, multiply by each angle by 
sinθ for the powder pattern.  Try including, for example exp.nPoints ≥ 212. 
 
angle = 0:0.05:90; 
for ii = 1:length(angle); 
    exp.CrystalOrientation=[0 angle(ii) 0]/180*pi; 
    %% <- Your code here 
    [x,y]=pepper(sys,exp,opt);          % perform calculations 
    Y(:,ii)=y'/max(y)+ii*4;     % y-data is saved as a 2D stack 
    Yno(:,ii) = y';             % y-data no stack offset 
    Ysin(:,ii)=y'.*sin(exp.CrystalOrientation(2)); % y-data * sin(theta) 
end 
figure(3); subplot(2,1,1); pcolor(x',angle,Yno'); shading flat; colormap jet; 
subplot(2,1,2); plot(x,sum(Ysin')); title('X-band A(63Cu)'); xlim(exp.Range); 
 
Assign features in the ESR spectrum to mI = 3/2, 1/2, -1/2, and -3/2 transitions, noting ΔMS=1 and ΔMI=0. 
How would you change the A(63Cu) values for the X-band spectrum to appear like the W-band spectrum? 
 
4. The parameter values stated in exercise 3 are close that of CuTPP.  By adding the 14N hyperfine for CuTPP 
of A(14N) = [54 45 45]/MHz, show and explain the expected complexity of CuTPP of natural abundance Cu 
over just the lowest field MI peak of Cu at g|| by setting the field sweep range values from 273 to 286 mT.  The 
splitting of the hyperfine features for identical hyperfine values should follow the rule of 2nI+1, where n is 
the number of nuclei, and I is the nuclear spin.  Note the influence gn(63Cu)=1.4849 and gn(65Cu)=1.5877, 
according to an isotropic hyperfine interaction.  Start with 63Cu, then switch to natural abundance Cu, and in 
a series of simulations, sequentially add 1-to-4 14N.   

Set field range from 265 to 288 mT.  Start with 0.25 mT linewidth and in the final try also 0.75 mT. 
 
5. The first part of these exercises deal with rigid-limit spectra where the molecule is frozen, i.e. tumbles at 
rates very much slower than the microwave frequency.  When molecules spin at rates comparable to the 
microwave frequency, the sample is in the slow-motional regime.  Alternatively, the molecule might tumble 
at rates much faster than the microwave frequency and this is described as the fast-motion limit, such as in 
room temperature NMR and small-molecule ESR in low-viscosity solvents.  An estimate for the rotational 
correlation time (average motion to 1 radian) comes from the Stokes-Einstein equation. 

 𝜏௥ =
ଵ

଺஽ೝ೚೟
=

ସగఎோయ

ଷ௞ಳ்
          (5) 

Here,  is the solvent viscosity (toluene 0.59 centiPoise) and R is the hydrodynamic radius of the molecule 
(about 7.3 Å for CuTPP).  What is your estimate of r for CuTPP?   ________   What is log10 of that value 
(=logtcorr) ________ ?  Using the function chili and the parameter values from exercise #3 (without 
nitrogen hyperfine),  

a) First make a plot of the spectrum with your calculated correlation time based on the microwave 
frequency (νMW) of 9.4 GHz.  What is the logtcorr value _________ ? 

b) Make a stack plot, of logtcorr varied from -11 to -7 (enter -11:-7 in GUI), how do the spectra change? 
  

This problem requires systematic variation of  sys.logtcorr (see Appendix C, pg. 31).  You may need to 
increase opt.knots = 90; and opt.LLKM  = [32 20 10 10]; for elimination of artifacts. Simulations 
may take several minutes, especially with 63Cu hyperfine. 
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Simulation Exercises, part II 
6.  Following the Prelab Q2, simulations may be performed directly in the absence of a simulation package.  
The spin Hamiltonian, H = HEZ + HNZ + HHF, is where the three terms are the electron Zeeman, nuclear 

Zeeman, and hyperfine interactions.   0 0
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( )

2e B z n N z Z Z

A
H g B S g B I AS I I S I S           

    a. Calculate energy levels of S = 1/2, I = 1/2 for A = 1420 MHz, B0 range of 0 to 400mT, geff = 2.00294, gn = 
5.58569.  Label energy levels in the high-field limit and draw lines for the 9.4 GHz transitions. 
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1

2
𝑔ே𝜇ே𝐵଴ +

ℎ𝐴

4
 

 
clear all; clc; 
 
% Constants 
geff=2.00294;        % H atom electron, isotropic 
gn=5.585695;    % H atom nucleus 
h=6.6261e-034;       % J.s  Planck’s constant 
muB=9.27400968e-24;  % J/T  Bohr magneton 
muN=5.05078324e-27;  % J/T  nuclear magneton 
 
% Variables 
B0=(0:0.05:400)./1000;  % Magnetic flux density, T 
A=1420.40575e6;         % isotropic hyperfine coupling, Hz 
vmw=9400e6;             % microwave frequency, Hz 
 
% get eigenvalues 
for ii=1:numel(B0) 
    H=[+0.5*geff*muB*B0(ii)-0.5*gn*muN*B0(ii)+h*A/4 0 0 0;... 
        0 +0.5*geff*muB*B0(ii)+0.5*gn*muN*B0(ii)-h*A/4  h*A/2 0;... 
        0 h*A/2 -0.5*geff*muB*B0(ii)-0.5*gn*muN*B0(ii)-h*A/4 0;... 
        0 0 0 -0.5*geff*muB*B0(ii)+0.5*gn*muN*B0(ii)+h*A/4]; 
    [v,d]=eig(H);           % calculate eigenvalues (d) and eigenvectors(v) 
    E(ii,:)=diag(d)./h;     % collect eigenvalues for each field value 
    d41(ii,:)=E(ii,4)-E(ii,1);   % differences 
    d32(ii,:)=E(ii,3)-E(ii,2); 
end 
 
figure(1); clf; 
plot(B0*1e3,E./1e9); % mT vs. GHz 
xlabel(‘B_0 (mT)’); 
ylabel(‘E/h (GHz)’); 
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6. b. Make an X-band ESR spectrum (9.4 GHz) with a Lorentzian linewidth of 0.5 mT, using 
convolution.  Append this code to your 6. A. script and adjust as required.  After determining the 
resonance field for the two transitions, what is the difference in their polarization, P, where P = 
tanh(geff*μB*B0/kT)?  How you might use P in IESR(a.u.) ∝ (pMs’,MI’ - pMs,MI)|〈MS′,MI′|ŜX|MS,MI〉|2  ? 
 
%% part b 
y41 = interp1(d41,B0,vmw);  % interpolate to get resonance field                 
y32 = interp1(d32,B0,vmw); 
Npts = 512*6;                               % number of x points 
dB = (y32-y41)/(2/3*Npts-1); disp(dB*1e4);  % field step 
Bnew = y41-Npts/6*dB:dB:y32+Npts/6*dB;      % new field axis 
spc = zeros([numel(Bnew) 1]); 
spc(Npts/6+1) = 1; spc(5/6*Npts) = 1; spc(Npts+1) = 0;  % make stick spectrum 
FWHM = 6;                                           % Full-Width Half-Max 
gam = FWHM/2/dB*1e-4;                               % gamma, correction factor 
Ylz = gam^2./(gam^2+(-1*Npts/2:Npts/2).^2); % Lorentzian broadening function 
spcL = ifft((fft(Ylz’)).*(fft(spc)));       % perform convolution 
spcL = fftshift(spcL); 
spcL = spcL(1:Npts); 
figure(2); clf; 
plot(Bnew*1000,spcL,’k’);  
xlabel(‘B_0 (mT)’);  
ylabel(‘ESR Signal’); 
 
 

6. c. Consider now the eigenvectors as a function of field.  What are they in very first few field points 
and how does this change as one approaches the field range for X-band ESR?  Which field region 
best describes a coupled angular momentum F, where F = I + S ? 
 
Try adding the following after   [v,d]=eig(M);   in the for loop of question 6. a.  You might wish to 
reduce the number of B0 field points after first doing a trial of for ii=1:1  Note that re-ordering of columns 
may need further re-ordering for B0 = 0 and other fields. 
  
  imagesc([v(4,4) v(1,1) v(1,3) v(4,2);... 
           v(3,4) v(2,1) v(2,3) v(3,2);... 
           v(2,4) v(3,1) v(3,3) v(2,2);... 
           v(1,4) v(4,1) v(4,3) v(1,2)]); drawnow; 
  text(1,4,num2str(v(1,4))); text(1.6,2,num2str(v(4,2))); 
  text(2.6,2,num2str(v(2,1))); text(1.6,3,num2str(v(2,3))); 
  text(2.6,3,num2str(v(3,1))); text(4,4,num2str(v(3,3))); 
  pause(0.5); 

 
 

6. d.  You have calculated the eigenvalues and eigenvectors with variation of B0.  It is possible for 
some spin systems to derive an analytical eigenfunction equation that describes the eigenstate.  Try 
plotting the following on the figure of 6a., using  hold on; 
 

eig2 = 3/32*(-8*A*h/3+sqrt((256/9)*A^2*h^2+(256/9)*B0.^2*geff^2*muB^2+... 
    (512/9)*B0.^2*geff*gn*muB*muN+(256/9)*B0.^2*gn^2*muN^2)); 
 
eig25 = -h*A/4+0.5*sqrt((geff*muB+gn*muN)^2.*B0.^2+A^2*h^2); 
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DAY2 – EXPERIMENTAL DATA ACQUISITION  

 
 
Spectrometer preparation    
   Work with the JD to identify spectrometer components, set up the cryostat with a N2(l) dewar for  
temperature of 100K, and warm-up the microwave bridge.  First the ESR-900 cryostat should be set 
in the magnet.  Switch the turbo pump on and it will engage the roughing pump, left on at all times, 
as required.  Next, the cryostat valve is opened.  This will remain opened for the duration of the 
experiment.  You might need to fill the 60L N2 tank (10-20L is enough).  Insert the Oxford Instruments 
LLT-600 transfer line into the liquid N2 tank with the assembly stack in place and closed.  
   Insert the transfer line into the EPR-900 cryostat and turn on the GAST G4 diaphragm pump with 
both the transfer line needle valve and the VC41 gas flow controller open several turns.  Turn on the 
Oxford Instruments ITC-503S  controller and set the temperature to 100K and the Proportional, 
Integral and Derivative (PID) to 15 K, 2.5 min., and 0.5 min.  Then tighten-down the transfer line in 
the cryostat.  Once gas flow of about 0.5-1 in L/Hr is achieved in the VC41, turn the transfer line 
needle valve down to about ½ turn open and start to turn down the flow at the VC41 to keep the 
vacuum as displayed by the VC41 in the range of 800-700 mBar (0 mBar on the VC41 scale is 
atmospheric pressure, ca. 1013mBar) to prevent formation of frozen N2 blockages which occur in 
the VC41 displayed value of ca. 863 mBar.  When the temperature passes below about 250K, switch 
from MANUAL on AUTO on the ITC-503S temperature controller.  DON’T PRESSURISE TANK, the 
bleed valve “Wade” and adjacent bladder connection at the top of the liquid nitrogen dewar should 
be opened fully.  The N2 gas line is reduced to a light flow and attached it to the purge port on the 
back of the resonator waveguide.  The heater should slowly increase to 20-30V as 100K is 
approached. 
 
SAFETY: Safety glasses must be worn.  Sudden release of cold N2 gas from a pressurised liquid N2 dewar or 
condensed atmosphere in a tube can cause severe cryogen burns, cryogenic gloves are essential for LLT-
600 transfer line handling.  Any pressure must be released with the bleed valve in a controlled manner by 
the JD prior to removal of the transfer line from the liquid N2 dewar.  Students should not adjust the 
spectrometer hardware or change samples without the JD present.   
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Collection of Frozen Solution Spectrum 
   In this beginning part of the laboratory you will obtain ESR spectra of a ca. 2 mM CuTPP solution 
at 100 K.  For insertion of the sample to a cryostat below its melting point (toluene, 178 K), the 
sample is first frozen in liquid N2.  If the cryostat is above the freezing point, the sample should be 
inserted in liquid form.  Insertion of a frozen sample into a warm, flowing cryostat will result in a 
broken tube due to primary melting and expansion of the organic solvent from the bottom first.  
Typically one would follow the sample containing an analyte with a solvent blank, but in this case, 
we’ve found that the background is of negligible intensity with respect to the ESR signal.  
   It is your first objective to obtain a high quality spectrum under non-saturating conditions.  The 
CuTPP sample should be mounted in the sample stack connector and then frozen slowly in liquid 
nitrogen from bottom to top at vertical insertion rate of about 1 mm per 2 sec.  Switch off the 
diaphragm floor pump, let the vacuum in the cryostat return to zero, insert your frozen sample, and 
turn the pump back on again.  After allowing the temperature of the sample to equilibrate, complete 
spectrometer tuning with the instructions on the following page.  The ESR signal is measured with a 
reflection resonator.  The absorption of microwaves by the sample, i.e. sample resonance, 
fundamentally alters the free passage of microwaves into the resonator.  This induced imbalance 
results in reflected microwave power toward the detector diode. 

 
It is important to be familiar with the decibel scale for a 200 mW microwave source: 

 
10 dB of Attenuation = 10 1010dB 10 * log (P / P ) 10 * log (20mW / 200mW)out in    

 

 
The ESR spectrometer software interface in Tune Mode, showing resonator “dip”. Find dip icon. 
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CW-ESR Tuning Procedure  
   Please note that that the Rotary Vane Attenuator, Phase Shifter, Iris, 
   and Frequency are mechanically-driven devices with a response time. 
 
(1) Switch on Tune Mode  Look for dip icon in lower left part of screen 
 
(2) Set B0 field off-resonance Perform tuning at a field position 
     without an ESR signal. 
 
(3) Turn Reference Arm off First, the reflections from the cavity are 
     minimized in isolation from reference. 
 
(4) Set Attenuation to 20dB, find dip Cryostat + blue or black  resonator 
       using the Frequency slidebar.     ~ 9.4 GHz 
       Center dip on center line, Empty blue resonator ~ 9.8 GHz 
        using the Mode Zoom Factor as required. Empty rectangular resonator ~ 9.7 GHz 
 

(5) Use the Iris to minimize reflected power at  
        resonator frequency 
 

(6) Turn Reference Arm on, with Bias in middle 
(7) Set Attenuation to 30dB and  
        use Phase to get a symmetric dip 
(8) Set Attenuation to 20dB and go to Operate Mode 
 

(9) Center AFC Offset percentage within 
        ~ +/-15% w/ Frequency slider 
 

(10) Set Attenuation to 60dB This shuts down Transmitter Arm,  
     -60dB= 1/1,000,000; -3dB=1/2; -6dB=1/4. 
 
(11) Use Bias to get 200μA in Diode Current 200μA is the center of linear detection 
(12) Set Attenuation to 20dB, center Diode with Iris 
(13) Set Attenuation to 10dB, center Diode with Iris 
 

(14) Use Signal Phase to maximize Diode maximize phase coherence of reference and  
     transmitter paths at the diode 
(15) Re-center Diode at 200μA w/ the Iris as necessary 
(16) Check Tuning at Attenuations from 10dB to 50dB in steps of 10dB 
          Re-center diode with Iris as necessary 
(17) Switch on Tune Mode 
(18) Set attenuation at 33dB and wait for a 
          green Q-value measurement 
(19) Set attenuation at 23dB and  
          switch on Operate Mode … done! 
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============== Acquisition Optimization ================== 

First complete the previously described Tuning.  For CuTPP at 100K., determine the extent of the 
ESR signal in the Zeeman field sweep under moderately high microwave power and modulation 
amplitude, e.g. ~10mW and 10G, respectively, over a field sweep range of 100 to 7000G, with a 
sweep time of 120 seconds and a time constant of 20.48 msec (under the Options tab).  Other 
samples have some given parameter values to expedite the signal acquisition optimization. 
 

                                       a. CuTPP (100K);   b. CuAcetate (100K);   c. CuTPP(200K);  
1. ESR Signal Width (G) a. _____   b. _____   c. ______   High field edge minus low field edge 

2. Center of Signal (G)  a. _____   b.  3250   c. __a.___   Field value in middle of the signal 

3. Sweep Width (G)  a. _____   b.  6300   c. __a.___   ~ Signal Width + 20*narrowest feature 

4. Narrowest Feature (G)   a. _____   b. _____   c. ______   FWHM or peak-peak width 

5. Mod. Ampl. (G) a. _____   b. __4__        c. __a.___   0.3 of narrowest feature  

6. Sweep Time  (sec)    a. _____   b.  _140_    c. __a.___   ~10-50 Gauss/ sec., or 1-10 min. 

7. Time Constant (ms)   a. _____   b.  40.96   c. __a.___   1/10th time to pass narrowest feature 

Perform a sweep under these conditions.  You may need to iteratively change the narrowest 
feature and modulation amplitude and perform some intermediary sweeps. 
 

   Then set the field to the maximum signal intensity point in the spectrum by clicking and dragging 
the green vertical field marker in the spectrum.  Temporarily set the time constant to 655 ms.   Go 
to 10 dB attenuation and set the receiver gain such that the receiver level is somewhere between 
+/- 60-80%.  Find a point in the field sweep range where there is no ESR signal intensity and make 
sure that the signal level is at zero by using the offset. 

Selected Microwave Power Optimizations (receiver level %) 

Microwave 
attenuation (dB) 10 16 22 28 34 40 

Microwave 
power (mW)       

CuTPP (100K)       

 
8. Microwave Atten. (dB) a. _____ b. __22_ c. __20_ non-saturated at ΔSignal = (ΔPower)^0.5 
 
9. Receiver Gain (dB) a. _____ b.  __41_ c. _____ Max |Signal| to +/- 60-80% of Receiver 
===================================================== 
Once you establish the sweep widths, proceed with optimizing modulation amplitude by finding 
your narrowest feature and reducing the modulation amplitude until the feature doesn’t change in 
width.  Under exacting conditions, an undistorted lineshape would require a modulation amplitude 
of about 1/10th the line width, here we recommend 3/10ths of the narrowest feature to reduce signal 
averaging time.  A choice of microwave power is obtained by finding a power where the signal 
amplitude is linear with the square root of the microwave power.  An expedient method of 
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microwave power optimization is to decrease the microwave power in 6dB steps from a low 
attenuation value until the ESR signal changes by a factor of two each time, and the above table may 
be used for that purpose.  Alternatively, one may measure a two dimensional data set of field and 
power. 

𝑆 = 𝐾√𝑃 ൣ1 + ൫𝑃 𝑃ଵ ଶ⁄⁄ ൯൧
௕/ଶ

ൗ     (6) 

   In Eqn. 6, the relation of ESR signal amplitude (S), which can be defined as the signal amplitude at 
a single field value, is shown relative to the microwave power (P), using a scalar (K), the value of 
microwave power for half-saturation (P1/2) power, and a homogeneity factor (b).  
 

  
Figure 2. Plots of Eqn. 6, at limits of b = 1 for inhomogenous broadening of ESR lines, an intermediate 
case of b = 2 and at a limit of b = 3 in the case of homogeneous broadening. The plot on the right 
shows a graphical means of estimating the half-saturation power. 
 
Acquisition summary: 

 Temp(K) Sample Scans Comments 

1.)  100K CuTPP 12 FREEZE the sample prior to insertion 
2.) 100K CuAcetate 1 Use provided parameter values 
3.) 200K CuAcetate 1 Same as #2 
4.) 200K CuTPP 4 DON’T freeze sample prior to insertion. 
5.) 300K CuTPP 4 Same as #4 
6.) 300K CuAcetate 1 Same as #2 

 
Exit checklist: 
Email yourself the following, in a compressed ZIP file: 

ESR spectra for all acquisitions, converted to tab-delimited ascii files by JD. 

UV-Vis data for Post-lab question 1. 

Simulated spectra for Post-lab question 2. 
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Post-Lab 
 Q1. Frozen solution measurement of CuTPP 

 (Q1a)  If you were to substitute the Cu(II) with low-spin Co(II), how would expect that to effect the 14N 
hyperfines hyperfine interaction?  Consider the energy levels of and occupations of the d-electrons. 

 (Q1b)  Considering 20
0

2

3iso e B n NA g g
h


   , = ρ(1811 MHz), the isotropic 14N hyperfine on a simplified 

level, what fraction (ρ) of the unpaired electron spin density is in the s-orbitals of the nitrogen 
ligands, individually and in total?  Use the hyperfine values from Day 1, exercise 3, A(14N) = [54 45 
45]/MHz.  What is the remainder of spin density that may be associated with the Cu ion? 

 (Q1c)  Following the Introduction discussion of excited state mixing and the information provided below, 
to what extent are you able to assign d-d transitions in the optical absorption spectrum with the g-
values of Day 1, simulation exercise 3, g = [2.05 2.05 2.2]? 

 
 Figure 3.  Optical absorption spectrum of CuTPP in toluene solution at two concentrations. Transitions 

in wavenumbers (cm-1) are a.15625 b. 16647 c.17241 d.18797 e.19685 f.21367 g.23041 h.24390 
i.25641 j.27322, and k.28901. 
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   Cu 2
|| = 4 7 3 7 e eA P g g g g         P     (7c) 

 The free-ion spin-orbit coupling constant is 1830cm   , λ=±ζ/2S, while α, β, and δ  are covalency 
parameters, vide infra.  An initial guess for the parameter values can come from the related molecule, 
phthalocyanatocopper(II).  Phthalocyanine covalencies are the dx2-y2 orbital and 14N σ-orbitals, α2 ≈0.76, 
the dxy orbital and porphyrin π-orbital, β2=1, and the dxz and dyz orbitals and porphyrin π-orbital, 
δ2≈0.60.  The values are 1 for purely ionic bonding, but less than 1 for covalent bonding.  The Fermi-
contact term in equation 7c is Pκ, where P is the dipolar coupling of the d-electron to the 63Cu nucleus 
and κ is the orbital reduction factor.  Note that d-d transitions are weakly allowed via vibronic coupling 
in the distorted samples that lack a center of inversion.  Assume that β2=1 and P=1164 MHz and use 
equations 7 to assign  2 1g gb b   and  1g ge b  to peaks in the UV-Vis spectra data files provided 

and fine-tune values for α2 and κ.  You may select peaks based on the data files other than those 
indicated above. 

 
 (Q1d)  There are twelve primary distortions of porphyrin rings, six 

out-of-plane, and six in-plane.  In the case of a saddle distortion, 
two opposite pyrroles rings are lowered out-of-plane with 
respect to the alternate pyrrole-Cu(II)-pyrrole axis.  Based on the 
orbital overlap equations of question (c), what is your qualitative 
prediction of the effect on ESR parameter values {g-values, 
A||(63Cu), A(14N)} by increasing a saddle distortion? 

Q2.  Slow-motion EPR of CuTPP 
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The JD will provide you with a series spectral simulations that use the experimental g-tensor and hyperfine 
tensor values as a basis for simulations that vary the rotational correlation time of the CuTPP at 200 K and 
300 K.  A help document for importing the data into MS Excel is included, further notes are below and on 
next page. 
 
To have performed these simulations, first a slow-motion spectrum of only the g-tensor and Cu hyperfine 
interaction was calculated.  Then a stick spectrum of the isotropic 14N hyperfine was convolved with the Cu-
only spectrum, similar to what you did in exercise 6b.  
 
One of the simplest goodness-of-fit equations is a sum of the squares of errors:  
 

 2( ) ( )
1

Exp i Sim i
i

N
Ssq y y


              

 
Here, N is the number of spectrum points, yExp(i), ySim(i) are the ith intensity of the experimental and 
simulated spectrum, respectively (i=1,… N). 
 
(Q2a) Make a plot of Ssq vs. τr for the 200 K data and the 300 K data.  Identify the best correlation times for 

the CuTPP spectra measured at 200 K and 300 K.  What are they in nanoseconds? 
 
(Q2b) Make plots of the data, best fit and their difference for 200 K and 300 K (two plots, three traces 

each).  Correctly label the axes, title and figure legend. 
 
(Q2c) Given the following equation, explain trend the in rotational correlation times vs. temperature as 

determined in question Q2a. 
34

3r
B

R

k T

   

 

Further notes: 
 
The documents you need for this are named as follows:  taulist_200K.txt, taulist_300.txt, taur_200K.txt, 
taur_300K.txt as well as the data files for the two spectra at the different temperatures with a different 
extension, *.dat, which means changing the display criteria in the data import window. Two of the files 
contain simulations that vary the correlation time, they are tailored to the number of points for the 200 K 
and 300 K data you generated.  The other two files are the tau values used in the simulations for 200 K and 
300 K, given in log10(τr) as in simulation exercise. 
 
You will need to import the 3 text files for each temperature into Excel (taulist, taur and the data file). A 
good way to set these out in Excel is the data file in A1, taur in H1 and taulist in D6. 
 
To calculate SSQ use the ‘B’ column of the data file you imported (this is your yExp(i)) and compare it to 
each column H to X  (this is your  ySim(i)) using Eq. 8 of the simulation data.  
 
Do this for the 200K case then repeat for the 300K case.  
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After import your spreadsheet should look something like this:  
 
 
 
 
 each column represents a different y sim value 
 
 
 

 
 

 
 
 
  

This is the simulation data from the file 
taur, in the SSQ calculation  

 
This is the data from the tau_list file.  

This is the yexp value, with 
the data from the .dat file.  The calculation to get E7 was  

=SUMXMY2(B:B,H:H) 
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Q3.  Solid state ESR of copper acetate 
This bimetallic system contains two strongly-coupled spins, with the zero-field splitting described by a dipolar 
component,  2 2 2 2 3

Cu-Cu2 / 2 2z x y BdipD g g g r      , with r = 2.617Å.   This question concerns estimation of 

isotropic J, representing the exchange coupling for the anti-ferromagnetic energy difference between the 
ground state singlet and excited triplet state manifold.  For interest only, a more complete anisotropic 
exchange coupling that splits the zero-field energies of the singlet and triplet states is given as

     2 2 2 2 2 2 2 2 2, 2 , 2 , /32z y xexD J x y xy J x y xz J x y yz           , where Δz=gz-ge, Δy=gy-ge, and Δx=gx-ge, and  J(x2-

y2,dπ) is the exchange coupling between the d(x2-y2) orbital of one Cu(II) and the excited stated dπ orbital of 
the other Cu(II).  ESR at many different frequencies up to 420 GHz was used to determine g=[2.0545 2.0792 
2.3637] and  D =[ 0.1014 0.1220 -0.2233]/cm-1. 

 
Figure 4. X-band ESR comparison of powders of 5% CuTPP in ZnTPP (red) and neat copper 
acetate (blue), collected at 125K and microwave powers of 0.2mW and 2.5mW, respectively.  
The microwave frequency is 9.3775 GHz. 

 
(Q3a) Why is the red spectrum located only in the center of the spectrum, while the blue spectrum appears 
mostly on either side?  Use Fig. 1 and the energy level diagrams below to label features in your 100 K copper 
acetate spectrum on the basis of D-tensor direction, x, y, & z.  Draw vertical lines for transitions in the 

following and label the states according to 0
ˆˆ

EZ B eff ZH g B S and the high-field representation, |S,MS〉. Note 
that the zero-field representation involves taking linear combinations of eigenstates, e.g. (|S,MS〉±|S,MS-
1〉)/√2.  Hint: use a ruler for νmw = 9.4 GHz between lines, it is ΔE = gμBB0 and may have any offset on y-axis. 

 
 
(Q3b)  Subtract the minimum of the negative peak at ~590 mT from the baseline average of last 20 points ca. 
700 mT for 100 K, 200 K, and 300 K and comment on the temperature dependence.  Can you estimate a value 
for J by fitting the data with following equation?  You may need to scale the data by an arbitrary constant, 
such as 3 x 10-4 (omits temperature-independent paramagnetism and monomers).  Here:  Ĥex = -JŜ∙Ŝ  

𝜒∥ =  
0.735

𝑇
൤1 +

1

3
𝑒𝑥𝑝(−𝐽/𝑘஻𝑇)൨

ିଵ
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Appendix A.  Spin operators for 14N and 63/65Cu 
 
For 14N, it follows that for an I=1 spin, the spin operators are 

𝐼መ௫ = ℏ ቎

0 1 √2⁄ 0

1 √2⁄ 0 1 √2⁄

0 1 √2⁄ 0

቏ 𝐼መ௬ = ℏ ቎

0 −𝑖 √2⁄ 0

1 √2⁄ 0 −𝑖 √2⁄

0 1 √2⁄ 0

቏     𝐼መ௭ = ℏ ൥
1 0 0
0 0 0
0 0 −1

൩  

   𝐼መା = ℏ ቎
0 √2 0

0 0 √2
0 0 0

቏         𝐼መି = ℏ ൥

0 0 0

√2 0 0

0 √2 0

൩ 

 
For 63Cu and 65Cu, it follows that for an I=3/2 spin, the spin matrices are 
 

𝐼መ௫ = ℏ

⎣
⎢
⎢
⎢
⎡ 0 √3 2⁄ 0 0

√3 2⁄ 0 1 0

0 1 0 √3 2⁄

0 0 √3 2⁄ 0 ⎦
⎥
⎥
⎥
⎤

        𝐼መ௬ = ℏ

⎣
⎢
⎢
⎢
⎡ 0 −𝑖√3 2⁄ 0 0

𝑖√3 2⁄ 0 −𝑖 0

0 𝑖 0 −𝑖√3 2⁄

0 0 𝑖 √3 2⁄ 0 ⎦
⎥
⎥
⎥
⎤

      

 𝐼መ௭ = ℏ ൦

3 2⁄ 0 0 0
0 1 2⁄ 0 0
0 0 −1 2⁄ 0
0 0 0 −3 2⁄

൪   𝐼መା = ℏ ൦

0 √3 0 0
0 0 2 0

0 0 0 √3
0 0 0 0

൪      𝐼መି = ℏ ൦

0 0 0 0

√3 0 0 0
0 2 0 0

0 0 √3 0

൪ 

 
A.2a. Example calculation in Table 4.    ℋ෡ௌை = 𝜁𝐿෠ ⋅ 𝑆መ   operating on spin orbital |𝑑௫మି௬మ ,α⟩          ħ = 1 

 ℋ෡ௌை = 𝜁𝐿෠ ⋅ 𝑆መ = 𝜁ൣ𝐿෠௫𝑆መ௫ + 𝐿෠௬𝑆መ௬ + 𝐿෠௭𝑆መ௭൧ = 𝜁 ቈ𝐿෠௭𝑆መ௭ + ቆ
𝐿෠ା+𝐿෠ି

2
ቇ ቆ

𝑆መା+𝑆መି

2
ቇ + ቆ

𝐿෠ା−𝐿෠ି

2𝑖
ቇ ቆ

𝑆መା−𝑆መି

2𝑖
ቇ቉ 

=  𝜁 ൤𝐿෠௭𝑆መ௭ +
1

4
൫𝐿෠ା𝑆መା + 𝐿෠ି𝑆መା + 𝐿෠ା𝑆መି + 𝐿෠ି𝑆መି൯ +

1

4𝑖ଶ
൫𝐿෠ା𝑆መା − 𝐿෠ି𝑆መା − 𝐿෠ା𝑆መି + 𝐿෠ି𝑆መି൯൨ 

 

=  𝜁 ൤𝐿෠௭𝑆መ௭ +
1

2
൫𝐿෠ି𝑆መା + 𝐿෠ା𝑆መି൯൨ 

 

ℋ෡ௌைห𝑑௫మି௬మ , 𝛼ൿ =𝜁 ቆ𝐿෠௭𝑆መ௭ +
1

2
൫𝐿෠ି𝑆መା + 𝐿෠ା𝑆መି൯ቇ ห𝑑௫మି௬మ , 𝛼ൿ 

= 𝜁 ቆ𝐿෠௭𝑆መ௭ +
1

2
൫𝐿෠ି𝑆መା + 𝐿෠ା𝑆መି൯ቇ ൜

1

√2
(|2,2⟩ + |2, −2⟩)ൠ |𝛼⟩ 

=
𝜁

√2
൤𝐿෠௭𝑆መ௭|2,2⟩|𝛼⟩ + 𝐿෠௭𝑆መ௭|2, −2⟩|𝛼⟩ +

1

2
𝐿෠ି𝑆መା|2,2⟩|𝛼⟩ +

1

2
𝐿෠ି𝑆መା|2, −2⟩|𝛼⟩ +

1

2
𝐿෠ା𝑆መି|2,2⟩|𝛼⟩

+
1

2
𝐿෠ା𝑆መି|2, −2⟩|𝛼⟩൨        ← 𝑒𝑥𝑝𝑎𝑛𝑑 𝑡ℎ𝑖𝑠 𝑦𝑜𝑢𝑟𝑠𝑒𝑙𝑓 

 

=
−𝜁

√2
(|2,2⟩ −|2, −2⟩)|𝛼⟩ +

𝜁

√2
(|2, −1⟩)|𝛽⟩  

 
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔, 

𝑑௫௭ + 𝑖𝑑௬௭ =
−1

√2
(|2,1⟩ − |2, −1⟩) −

1

√2
(|2,1⟩ + |2, −1⟩) =

−2

√2
|2,1⟩  

𝑑௫௭ − 𝑖𝑑௬௭ =
2

√2
|2, −1⟩  

 
𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑜 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠 𝑔𝑖𝑣𝑒𝑠: 

 

ℋ෡ௌைห𝑑௫మି௬మ , 𝛼ൿ =𝑖𝜁ห𝑑௫௬, 𝛼ൿ +  
𝜁

2
|𝑑௫௭, 𝛽⟩ +

−𝑖𝜁

2
ห𝑑௬௭ , 𝛽⟩ 
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A.2b. Expand wavefunction with Table 4.    Given the copper spin-orbit coupling constant 
1830cm   , use 

perturbation theory for first order corrections to the groundstate wavefunction  |𝑑௫మି௬మ ,α⟩ and  |𝑑௫మି௬మ ,β⟩.  The 

corrected wavefunction, |𝑎⟩ , is related to the uncorrected wavefunction |n⟩ by (ħ = 1): 

|𝑎⟩ = |𝑛⟩ − ෍
〈𝑚หℋ෡ௌைห𝑛〉

𝐸௠ − 𝐸௡
௠ஷ௡

|𝑚⟩ 

ℋ෡ௌைห𝑑௫మି௬మ , 𝛼ൿ =𝜁𝐿෠ ⋅ 𝑆መห𝑑௫మି௬మ , 𝛼ൿ, 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑑 − 𝑑 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑔. 6 − 6 & Table 4. Note -1*Δ b/c Em<En. 

|Ψା⟩ = |+⟩ = ห𝑑௫మି௬మ , 𝛼ൿ −𝑖
𝜁

−Δଵ

ห𝑑௫௬ , 𝛼ൿ +  
𝑖

2

𝜁

−Δଶ

ห𝑑௬௭ , 𝛽ൿ −
1

2

𝜁

−Δଶ

|𝑑௫௭, 𝛽⟩ 

|Ψି⟩ = |−⟩ = ห𝑑௫మି௬మ , 𝛽ൿ +𝑖
𝜁

−Δଵ

ห𝑑௫௬, 𝛽ൿ +  
𝑖

2

𝜁

−Δଶ

ห𝑑௬௭ , 𝛼ൿ +
1

2

𝜁

−Δଶ

|𝑑௫௭ , 𝛼⟩ 

 

A.2c. Electron Zeeman Hamiltonian with the prior wavefunction    ℋ෡ா௓ = 𝜇஻൫𝐿෠ + 𝑔௘𝑆መ൯ ⋅ 𝐵ሬ⃑  

ℋ෡ா௓ = 𝜇஻൫𝐿෠௫ + 𝑔௘𝑆መ௫ , 𝐿෠௬ + 𝑔௘𝑆መ௬ , 𝐿෠௭ + 𝑔௘𝑆መ௭൯ ⋅ ൫𝐵௫ , 𝐵௬ , 𝐵௭൯
ᇱ
 

= 𝜇஻𝐵௫൫𝐿෠௫ + 𝑔௘𝑆መ௫൯ + 𝜇஻𝐵௬൫𝐿෠௬ + 𝑔௘𝑆መ௬൯ + 𝜇஻𝐵௭൫𝐿෠௭ + 𝑔௘𝑆መ௭൯ 

൫𝐿෠௭ + 𝑔௘𝑆መ௭൯|+⟩ = 𝐿෠௭ห𝑑௫మି௬మ , 𝛼ൿ + 𝑖
఍

୼భ
𝐿෠௭ห𝑑௫௬, 𝛼ൿ −  

௜

ଶ

఍

୼మ
𝐿෠௭ห𝑑௬௭ , 𝛽ൿ +

ଵ

ଶ

఍

୼మ
𝐿෠௭|𝑑௫௭ , 𝛽⟩   ( use Table 2. ) 

+𝑔௘𝑆መ௭ห𝑑௫మି௬మ , 𝛼ൿ +𝑖
𝜁

Δଵ

𝑔௘𝑆መ௭ห𝑑௫௬ , 𝛼ൿ +  
1

2

𝜁

Δଶ

𝑔௘𝑆መ௭|𝑑௫௭ , 𝛽⟩ −
𝑖

2

𝜁

Δଶ

𝑔௘𝑆መ௭ห𝑑௬௭ , 𝛽⟩ 

= 2𝑖ห𝑑௫௬, 𝛼ൿ +
2𝜁

Δଵ

ห𝑑௫మି௬మ , 𝛼ൿ −
𝜁

2Δଶ

|𝑑௫௭, 𝛽⟩ +
𝑖𝜁

2Δଶ

ห𝑑௬௭ , 𝛽⟩ 

+
𝑔௘

2
ห𝑑௫మି௬మ , 𝛼ൿ +

𝑖𝑔௘𝜁

2Δଵ

ห𝑑௫௬, 𝛼ൿ −
𝑔௘𝜁

4Δଶ

|𝑑௫௭ , 𝛽⟩ +
𝑖𝑔௘𝜁

4Δଶ

ห𝑑௬௭ , 𝛽⟩ 

= ൬2𝑖 +
𝑖𝑔௘𝜁

2Δଵ

൰ ห𝑑௫௬, 𝛼ൿ + ൬
𝑔௘

2
+

2𝜁

Δଵ

൰ ห𝑑௫మି௬మ , 𝛼ൿ −  
𝜁

2Δଶ

ቀ1 +
𝑔௘

2
ቁ |𝑑௫௭ , 𝛽⟩ +

𝑖𝜁

2Δଶ

ቀ1 +
𝑔௘

2
ቁ ห𝑑௬௭ , 𝛽⟩ 

⟨+|൫𝐿෠௭ + 𝑔௘𝑆መ௭൯|+⟩ = ൜ൻ𝑑௫మି௬మ , 𝛼ห −
𝑖𝜁

Δଵ

ൻ𝑑௫௬ , 𝛼ห +
𝑖𝜁

2Δଶ

ൻ𝑑௬௭ , 𝛽ห +
𝜁

2Δଶ

⟨𝑑௫௭ , 𝛽|ൠ ൫𝐿෠௭ + 𝑔௘𝑆መ௭൯|+⟩ 

=
𝑔௘

2
+

2𝜁

Δଵ

+
2𝜁

Δଵ

+
𝑔௘𝜁ଶ

2∆ଵ
ଶ −

𝜁ଶ

4∆ଶ
ଶ ቀ1 +

𝑔௘

2
ቁ −

𝜁ଶ

4∆ଶ
ଶ ቀ1 +

𝑔௘

2
ቁ ≅

1

2
൬𝑔௘ +

8𝜁

Δଵ

൰ , 𝑛𝑜𝑡𝑖𝑛𝑔 
𝑔௘𝜁ଶ

2∆ଵ
ଶ ~10ିଷ  

Following ⟨−|൫𝐿෠௭ + 𝑔௘𝑆መ௭൯|−⟩, ⟨−|൫𝐿෠௫ + 𝑔௘𝑆መ௫൯|+⟩, ⟨+|൫𝐿෠௫ + 𝑔௫𝑆መ௫൯|−⟩, ⟨−|൫𝐿෠௬ + 𝑔௘𝑆መ௬൯|+⟩, &⟨+|൫𝐿෠௬ + 𝑔௘𝑆መ௬൯|−⟩ 

Build the spin-Hamiltonian matrix:    

|+⟩ |−⟩

⟨+|
ఓಳ஻೥

ଶ
ቀ𝑔௘ +

଼఍

୼భ
ቁ

ఓಳ஻ೣ

ଶ
ቀ𝑔௘ +

ଶ఍

୼మ
ቁ −

௜ఓಳ஻೤

ଶ
ቀ𝑔௘ +

ଶ఍

୼మ
ቁ

⟨−|
ఓಳ஻ೣ

ଶ
ቀ𝑔௘ +

ଶ఍

୼మ
ቁ +

௜ఓಳ஻೤

ଶ
ቀ𝑔௘ +

ଶ఍

୼మ
ቁ −

ఓಳ஻೥

ଶ
ቀ𝑔௘ +

଼఍

୼భ
ቁ

 

Therefore, the coefficients of the magic pentagon are calculated for a strong tetragonal distortion in d9. 

𝑔∥ = 𝑔௘ +
𝟖𝜁

Δଵ

  & 𝑔ୄ = 𝑔௘ +
𝟐𝜁

Δଶ

 

 
Appendix B.  CW-ESR Spectrometer Description 

   The microwave frequency operating range and design of CW-ESR spectrometers are based on adaptations 
of World War II radar technology and have evolved little since the 1970s.  Nonetheless, in recent years the 
advent of inexpensive high-speed digitizers has facilitated innovation in CW-ESR, yielding improvements in 
signal to noise up to a factor of 10.  Ensuing years of increased digitizer speeds and wide-band arbitrary wave-
form generators in the GHz range will affect the future ESR instruments.  
   As shown in the Tuning Procedure page earlier, the basic formulation of a CW-ESR spectrometer involves a 
single, highly-stable microwave source that is power-leveled to exactly 200 mW and locked to the frequency 
of the resonator with an automatic frequency control (AFC) unit.  The source microwaves split between two 
paths (1) the transmitter, circulator, and resonator, and (2) the reference.  The two paths, or arms, meet in a 
coupling arm and are detected with a Schottky diode operating in a linear response regime: microwave power 
is rectified and given a low-pass filter to yield an output voltage that is proportional to the square root of the 
incident microwave power.  In this sense the microwave circuit is called a bridge, in analogy to the electrical 
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measurements where a device under test generates a signal by affecting the balance of two large voltages, 
such as in resistance measurements of a Wheatstone bridge. 

 
Scheme 2. The microwave source delivering a range of frequencies is coupled to a cavity that filters a single 
frequency.  Frequency tuning is achieved with variation of the resonator dimension, with fine tuning achieved 
as an Automatic Frequency Control error voltage applied to a piezoelectric transducer. 
 
   One of the most important parts of the spectrometer for determining sensitivity is the microwave 
resonator, where microwave energy is stored prior to dissipation through resistive losses with the walls.  As 
mentioned in the Signal Amplitudes section, a figure of merit for the resonator in CW-ESR is the Q-factor.  The 
higher the Q-factor, the larger the number of cycles that microwave photons persist in the resonator and the 
higher the probability that they are absorbed by the sample.  Likewise, a sample that completely fills the 
possible microwave magnetic field lines maximizes the filling factor, η, and the likelihood of absorption by 
the sample.  The ESR resonator has an additional role of providing separation of the E-field and B-field 
components of the microwaves, providing a sample insertion volume of minimal E-field interaction.   
 

 
Figure 3. Calculated surface contours for the magnitude of H-field (panel a.) and E-field (panel b.) at the cross-
section demarcated with the black line.  The sample appears as a purple rod passing through the maximum 
of the H-field in the cylindrical resonator.  A cross-section of the resonator field lines are in the panel c., where 
magnetic field lines are show in red, in the plane of the page, while the electric field lines are in blue as into 
and out-off the page, with the sample in purple.  The resonator is attached through a side-wall coupling hole 
to the waveguide with a yellow tuning plunger visible in the bottom right.  This resonator features internal 
modulation coils in a pseudo-Helmholtz arrangement.  This is a TE011 mode cylindrical resonator (TE011: 
Transverse Electric mode, cylindrical nodes are zero angular nodes, one radial node and one node in height), 
with an optimal Q-factor for dimensions L=D (=4cm for the Bruker resonator used in this practical). 
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Appendix C.  A brief introduction to MATLAB and EasySpin 

MATLAB is a general purpose scientific programming language, which is designed to be powerful and easy to 
use.  EasySpin is a package of ESR simulation routines which runs using MATLAB.  In order to use EasySpin, 
therefore, you will need to understand a little about MATLAB. 

MATLAB syntax 

This introductions starts with the very basics.  These are, for the most part, very straightforward (but 
important) concepts.  Try writing the examples in the MATLAB command window 
 
1. Literals 
Literals are values which appear written in the source code.  For example the literal 
 34 
represents the number 34. 
Numbers can also be written in exponential form.  The literal 
 6.626e-34 
Represents the number 6.626 × 10-34.  The literal 
 ‘perturb’ 
Represents a string of letters.  Strings appear in purple in the MATLAB editor. 
 
2. Comments 
Comments are simply text in the code which is not part of the code.  They appear in green in the MATLAB 
editor.  They are preceded by a % symbol.  For example 
 % Set the value of a to 3 
 a = 3; 
 % The following line won’t do anything 
 % b = 6; 
 
3. Variable Assignment 
Variables are simply a way of referring to values.  In maths, variables may have unknown values which are 
worked out later.  In MATLAB, variables are assigned values based either on literals or on other variables.  
These values are assigned using =, e.g. 
 a = 3 
 b = 6 
 c = a + b 
 mu_b = 9.27400968e-24; 
 hbar = 6.626e-34; 
By default, MATLAB prints the results all assignments to the console.  This tends to clutter up the view.  Adding 
a semicolon after means that the output is not printed.  If a value is written, but not assigned to anything, the 
value gets assigned to the temporary variable ans.  
 
4. Vectors and matrices 
Vectors and matrices are written using square brackets, e.g. 
  g = [2.05, 2.05, 2.1]; 
defines a 3x1 row vector.  Use semicolons to write column vectors 
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  r = [1; 4; 2]; 
There’s also a quick notation to assign a row variable in one go.  The code 
  x = 1:5; 
sets x equal to [1, 2, 3, 4, 5].  This notation is particularly useful for loops. 
 
5. Structures 
Structures are simply collections of variables.  Collecting the variables into a structure allows for logical 
organisation of variables into groups, and makes it easier to pass a set of related variables to a function.  
Structures have fields, which are simply the names of the variables collected in the structure.  In MATLAB, 
these fields are referenced using the ‘.’ operator. 
For example, the lines 
  sys.S = 1/2; 
  sys.g = 2.0023; 
  sys.lwpp =0.5; 
defines a structure called sys, with fields S, g and lwpp.  The structure collects together information about a 
spin system.  EasySpin uses this information to perform the simulation.  EasySpin makes extensive use of 
structs. 
 
6. Functions 
Functions take a number of parameters, perform some kind of operation on them, and return some number 
of parameters as a result. 
For example, the function sqrt: 
  b = sqrt(a); 
takes the square root of the variable a and returns the value, which is then assigned to the variable b. 
 
7. Indexing 
Indexing means referring to a particular value (or set of values) in a matrix or vector.  Indexing uses subscripts, 
which are written in brackets after the variable name. For an example, consider the following: 
  x = [1, 2, 3, 4, 5] 
  y = x(5)  % y is now equal to 5 
  x(3) = -10  % x now equals [1, 2, -10, 4, 5] 
The first element of a vector is element 1.  The last can be referred to by using ‘end’. 
  x =[1, 2, 3] 
  x(end) = 7  % x now equals [1, 2, 7] 
  x(end-1) = 4 % x now equals [1, 4, 7] 
  x(end+1) = 6 % x now equals [1, 4, 7, 6]. 
In a matrix, you can refer to whole rows or columns by using the ‘:’ operator 
  x = magic(5) % creates a 5x5 magic square matrix 
  x(:,3) = 0  % sets the 3rd column of x equal to zero 
  x(2,:) = 7  % sets the 2nd row of x equal to 7 
 
8. Loops 
Loops cause the same piece of code to run repeatedly.  The number of times the code runs is determined by 
the loop variable.  It’s easiest to show by example 
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  x = [1,3,7,3] 
  for k = 1:length(x) 
      y(k) = x + k 
  end 
  % y now equals [2, 5, 10, 7] 
This code sets the variable x.  It then iterates over the variable k.  It first sets the value of k to the value of the 
first element in the vector [1, 2, 3 ... n], where n is the number of items in x.  It then executes the code 
between the for and end lines, which in this case sets the value of the k-th element of y.  Finally, the code 
returns to the top.  It sets k to the next value in the vector [1, 2, 3 ... n], and the process completes.  The loop 
ends when the loop has been run with k equal to all values in the vector. 
 
Selected EasySpin functions and structure fields: 
 
Spin System Structure 
This is generally called sys 
  sys.g = [a, b, c]; 
Sets the g-tensor of the electron being simulated. 
If a = b= c, the g-tensor is isotropic. 
If a = b ≠ c, the g-tensor is axial 
If a ≠ b ≠ c, the g-tensor is orthorhombic 
  sys.lwpp = x; 
Sets the peak-to-peak line-width of peaks in the simulation, in mT. 
  sys.Nucs = ‘63Cu’; 
  sys.Nucs = ‘Cu’; 
  sys.Nucs = ‘63Cu,14N,14N’; 
Sets the nuclei present in the system. 
‘63Cu’ performs a simulation using a 63Cu nucleus.  ‘Cu’ performs the simulation assuming that the different 
isotopes of copper are present in their natural abundances.  Extra nuclei are added in a comma-separated 
list. 
  sys.A = [-100, -100, -630]; 
  sys.A = [-100, -100, -630; 54, 45, 45; 54, 45, 45;]; 
Sets the hyperfine coupling (A-tensor) in MHz.  Each row consists of 3 columns, with the principal values of 
the tensor, and corresponds to a nucleus defined in the Nucs field. 
  sys.logtcorr = -4 
Sets the rotational correlation time, 𝜏௥, of the system, such that logଵ଴ 𝜏௥ is equal to the sys.logtcorr. 
 
Experimental Parameters Structure 
This is generally called exp 
  exp.mwFreq = 94; 
  exp.mwFreq = 9.5;  
The operating frequency of the spectrometer, in GHz.  X-band is 9.5 GHz, W-band is 94 GHz. 
  exp.Range = [300, 325] 
The magnetic field range (in mT) over which to perform the simulation.  If this option is not set, then EasySpin 
sets the range automatically.  Unfortunately, this automatic setting sometimes fails to work.  In this case the 
range must be set using this command. 
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exp.Orientations 
Sets the single-crystal orientations to be simulated.  If this field is not set, or is empty, then the powder 
average (or frozen solution average) over all orientations is calculated. 
Setting exp.orientations can be a little tricky; see at the bottom for a hint. 
 
Options Structure 
This is generally called opt 
  opt.Method = ‘perturb’ 
Sets the calculation method to be based on 2nd-order perturbation theory.  This is much faster than the 
default method. 
  opt.Output = ‘separate’ 
Causes EasySpin outputs one row for each spectrum, corresponding to a row in the ‘exp.Orientations’ 
variable. 
  opt.nKnots = 901 
Increases the number of orientations over which powder (or frozen solution) averages are performed.  More 
knots take more time to calculate, but give a better answer.  901 knots is usually excessive, but doesn’t take 
too long to compute for the straightforward systems we’re considering. 
 
Functions: 
 
pepper(sys, exp, opt) 
[B, spec] = pepper(sys, exp, opt); 
Calculates solid-state spectra.  In the first case, pepper automatically plots the spectrum.  In the second 
case, the field values are saved to B, and the spectrum to spec. 
 
chili(Sys,Exp); 
Calculates the slow-motional spectrum, using a correlation time set by sys.logtcorr 
 
stackplot(B, spec) 
produces a stacked plot, where each trace corresponds to one row of spec. 
 
More information on these can be found in the EasySpin help files. 
 
How to set the exp.Orientations matrix 
 
To perform a simulation over a range of orientations, we must supply an orientations matrix.  This is a 3 x n 
matrix.  If a row of the matrix is of the form [0, x, 0], then it represents a rotation of the z-axis.  [0, 0, 0] 
represents a crystal with z-axis aligned parallel to B, [0, pi/2, 0] represents a crystal with z-axis aligned 
perpendicular to B. 
 
While we could just perform a loop over all orientations, this is quite slow.  It is far faster to calculate all 
orientations at once.  To do that we need to make an orientations matrix. 
 
The first step is to define what orientations we want to test: 
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  n = 31; 
  OrientationsToTest = linspace(0, pi/2, n); 
This command creates a vector with n elements, equally spaced between 0 and pi/2. 
Next, we create a matrix to hold the orientation values.  We make sure it’s of the correct size, containing 
only zeros: 
  exp.orientations = zeros(3,n); 
Finally, we replace the middle column with the orientations we made above. 
  exp.orientations(2,:) = OrientationsToTest.’; 
Note the .’ after OrientationsToTest.  This tells MATLAB to take the transpose of the row vector, 
OrientationsToTest.  This converts it into a column vector, which we assign to the middle column of 
orientations. 
 
So, in the end, the code is: 
  n = 31; 
  OrientationsToTest = linspace(0, pi/2, n); 
  exp.orientations = zeros(3,n); 
  exp.orientations(2,:) = OrientationsToTest.’; 
 
Bonus Hint 
 
It’s possible to define short (one-line) functions as follows: 
  a = @(x,y) x + y 
Then call the function as follows 
  b = a(3,2) % b = 5 
This can be useful, e.g.: 
  h = 6.626e-34;  % in J s 
  mu_b = 9.274e-24; % in J per T 
  g_to_B = @(freq, g) h * (freq * 1e9) ./ (mu_b * g) * 1e3; 
  % The factor of 1e9 converts GHz to Hz 
  % The factor of 1e-3 converts T to mT 
  B = g_to_b(9.5, 2.02) 
This converts a g-value to a field strength (in mT) using a spectrometer frequency (in GHz).  A similar 
function can be defined to convert field strengths to g-values. 
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Code for making plots. 

 
% This function saves the current Figure in PNG format. 
% file - is appended with ‘.png’ 
% dpi - is dots per inch, recommended 400 
% w_inch - is width in inches 
 
function [] = esrProof(file,dpi,w_inch) 
scsize=get(0,'ScreenSize'); 
ppi=get(0,'ScreenPixelsPerInch'); 
sizexw=w_inch*ppi; 
ratio=scsize(4)/scsize(3); 
sizeyh=round(ratio*sizexw); 
pos1=[1,31,sizexw,sizeyh]; 
pr_res=strcat('-r',num2str(dpi)); 
print ('-dpng',pr_res,file); 
end 
 
================================================ 

% Example plotting code for a stack plot,  
% with offsets having already been applied to data arrays 
% subplot – see Matlab help file. 
 
subplot(1,1,1) 
plot(x1,Yo1,'r',x2,Yo2,'b',x3,Yo3,'k','LineWidth',1); 
axis tight; pbaspect([1 1.5 1]); 
ylim([1.05*min(min([Yo1 Yo2 Yo3])) 1.05*max(max([Yo1 Yo2 Yo3]))]); 
xlabel('B_0 (mT)','FontName','Arial','FontSize',10); 
ylabel('d\chi"/dB','FontName','Arial','FontSize',10); 
title('Hyperfine Splittings of CuTPP m_I=3/2 peak','FontName','Arial','FontSize',10); 
l=legend('^{63}Cu','^{65}Cu','Nat. Abnd. Cu'); 
set(gca,'ytick',[],'LineWidth',1,'FontName','Arial','FontSize',10); 
set(l,'Location','Northeast','FontName','Arial','FontSize',8); 
  
esrProof('SimulationExercise_04',400,4); 
 
================================================ 

% Example plotting code for an intensity surface 
% pcolor – see Matlab help file. 
 
pcolor(x',orients',Ys');  %sizes are x(m),y(n),& z(m x n) 
shading flat; 
axis tight; pbaspect([2 1 1]); 
% xlim([-0.01 0.01]+mean(sys.g)); 
xlabel('B_0 (mT)','FontName','Arial','FontSize',12); 
ylabel('d\chi"/dB','FontName','Arial','FontSize',12); 
title('Single Xtal Orients, \Delta\theta=0.1 deg.','FontName','Arial','FontSize',12); 
set(gca,'ytick',[],'LineWidth',1.0,'FontName','Arial','FontSize',12); 


