

Centre for Advanced Electron Spin Resonance

"a state-of-the-art facility for use by biochemists, chemists and physicists"

Dr Will Myers, 2 October, 2025, ICL Lecture Theatre

Introductory Lecture

- User Applications
- Instrumentation
- ESR Personnel
- How to use CAESR
- Magnet Hazards, Chemical,
- Microwave, and Laser Safety
- Sample Preparation
- Data Storage & Processing
- User Resources

ICL building

User Applications

- Diamagnetic → Paramagnetic
 - o 20 Å to 120 Å
 - Synthesize & Characterize labels:
 - Nitroxides, Trityl, Gd(III);
 - Redox/ E-chem to open shell states
- Intrinsic Paramagnets
 - Paramagnetic Catalyst Intermediates
 - Metallo-enzyme Mechanisms
 - Single Molecule Magnetism
- Transient Paramagnets
 - Photo-Activated Transient States
 - 1 ns resolution
 - Electrical &/or Optical Det

Pulsed EDMR

CW-EPR Characterisation $\gamma(e^{-}) = -658*\gamma(^{1}H)$

$$\gamma \left(e^{-} \right) = -658 * \gamma \left({}^{1}H \right)$$

$$h\nu = g_{eff} \mu_B B_0$$

neat solid, room temperature

 $g_{eff} = \sqrt{g_{\parallel}^2} \cos^2 \theta + g_{\perp}^2 \sin^2 \theta$

JMG DFT predicts g_{\parallel} = 2.000 g_{\perp} = 2.023

by experiment, $g_{\parallel}=1.993$ $g_{\perp}=2.043$

Magnetic dilution, ← Not just e⁻

hyperfine resolution

What about 73 Ge? I = 9/2

$$Pr(k) = n!f^{k} (1-f)^{n-k} / k!(n-k)!$$

- total number of sites
- k number of occupied sites
- ⁷³Ge abundance, 7.76%

3 mM in pyridine, 100K

Hyperfine Resolution, Beyond CW-EPR NiFe Hydrogenase

Dark-adapted sample, mixture of NiC & NiL

NiL

30 min. of laser pulses 1 mJ pulse energy 550 nm wavelength 20 Hz repetition rate

NiC

90 min. annealing at 200K

NiC simulation

A(¹H)=[18.4 -10.8 -18] /MHz Lit. ENDOR of *R. eutropha*, Brecht, *et al.*, JACS 2003, 125, 13075.

HYSCORE measured at 2.5 K

Frequency, MHz

ESR Instrumentation

5 research instruments

<u>name</u>	<u>GHz</u>	<u>band</u>	<u>method</u>	<u>location</u>
EMX _{MICRO}	9.1 - 9.9	X	CW	ICL F19
E580	9.1 - 9.9	X	CW / Pulsed	ICL F11
	33 - 35	Q	CW / Pulsed	
E680	9.1 - 9.9	X	CW / Pulsed	ICL F12
	92 - 94	W	CW / Pulsed	
E380	9.1 - 9.9	X	CW / Pulsed	Clarendon 020
Krymov	130	D	CW / Pulsed	Clarendon 020

EMX_{MICRO}

ICL/F19

- CW-EPR only
- Excellent SNR
- \geq 2.5 300 K with ESR-900
- \triangleright 100 450 K with N₂ heater
- \triangleright 77 K with $N_{2(I)}$ finger dewar
- > Automatic goniometer
- Room interlocked for Class4/3B lasers
- User scheduling

E680

ICL/F12

- 9.1-9.9 GHz, X-band & 94 GHz, W-band
- 2.5 300 K with CF-935 & ESR-900
- OPO laser: 213-1700 nm, 6-100 mJ, 7 ns pulse length 20 Hz
- API & ProDel automation
- Arbitrary Waveform Generator (AWG)
- Room interlocked for Class 4/3B lasers

E580

ICL/F11

- X-band and Q-band
- Arbitrary Waveform Generator (AWG)
- 140 W at Q-band
- ProDel & API programmable
- 2.5 300 K with CF-935& ESR-900 cryostats
- OPO laser 355, 410-2200 nm; 4-13 mJ; 7 ns length, 20 Hz
- Room interlocked for Class 4/3B lasers

CAESR Personnel

Professor Christiane Timmel http://research.chem.ox.ac.uk/christiane-timmel.aspx

Professor Arzhang Ardavan
https://www2.physics.ox.ac.uk/contacts/pe
ople/ardavan

Dr Will Myers

Office 72651 ICL F20a

Lab 72665 ICL F12

Fax 75410

william.myers@chem.ox.ac.uk

http://research.chem.ox.ac.uk/william-myers.aspx

- 1. Run CAESR & Services in Chemistry
- 4. Consultative role to students and staff
- 5. Collaborate with Department and External groups
- 6. Assist in joint publications
- 7. Pursue, publish, and present peer-reviewed research
- 9. Involved in the submission of grant applications
- 14. Students and staff training
- 15. Responsible for facility safety regulations
- -- Assisting w/ supervision of Part II and D. Phil. student projects
- -- Booking Meetings
- -- Teaching: Lecturing, small-group teaching, tutoring

How to Use the CAESR SRF

- Independent: Previous ESR (EPR) or support of experienced group member, ask for any help.
- 2. Semi-independent: Complete training, then independent measurements, scheduling, and data analysis. User asks for support as required.
- **3. With CAESR staff:** Complete training, then semi-independent measurements and scheduling. Extended support with project development, data analysis and publications.
- **4. Service:** "One-off" projects are rare. Routine or repetitive measurements are generally not possible, (see #2).
- **5. Collaboration:** Collaborate with the Scientific Applications Manager, or a D Phil from one of the co-Director groups might be available to use your project for their degree course.

Typical User Sequence for ESR

- Discussion with Scientific Applications Manager
 - Research plan, safety, and literature
 - Preliminary sample list
 - Purchase of clear-fused Quartz EPR tubes
- Booking CW-EPR time, COSHH
- Sample Preparations in F13
- CW-EPR in F19, with any required training
- Monthly booking meeting for Pulsed EPR
- Pulsed EPR and / or W-band CW-EPR

Magnetic Field Safety in ESR

Strong Magnetic Fields

Hazards to:

- -heart pacemakers
- -magnetic back or ID cards
- -watches (non-LCD)

Stray fields in Corridors
-outside F12 at a max field

<u>Electromagnet</u> field is mostly within its yoke

Cryogenic & Chemical Safety in ESR

- ❖ Wet lab work in F13 → departmental guidelines
- All samples (hazardous or not), need COSHH form on file in F20a.
- Samples occasionally break -- act quickly to save before complete thawing.
- Safety courses are available for how to handle liquid nitrogen and liquid helium.

LASER Safety in ESR

- ☐ All CAESR labs are inter-locked for use of Class 4 and 3B lasers.
- ☐ Pulsed OPO lasers for 230 2200 nm, 4 100 mJ, 20 Hz available for Transient ESR. CW lasers at 355 and 532 nm are available.
- ☐ New laser users must attend Chemistry Department safety lecture
- ☐ Users who wish to use their own lasers in CAESR must follow Departmental laser installation procedures.
- ☐ Laser Safety forms for each lab must be signed.

Microwave Safety in ESR

- Place microwave sources in Standby when changing resonators and samples.
- DON'T stare into the end of an open waveguide with microwaves propagating outward.
- X-band (9.4 GHz) exposure may result in cataracts.
 - √ approx. 60 min of CW at 200 mW / cm²

CAESR Wet Lab ICL/F13

- Drying oven, balance, sonicator, vortex mixer
- Fume Cupboard and Schlenk/Vacuum Line
- Flame-sealing tubes after de-gassing via FREEZE-PUMP-THAW
- Flame-sealing J. Young tube bottoms
- Mbraun LABstar ; Cary60 UV-vis

Sample tubes and volumes

Tube Dimensions			Micro-	Sampla	
O.D. (mm)	I.D. (mm)	L (mm)	wave Band	Sample Vol. (µL)	Comment
0.84	0.7	100	W	3	General, for powders and frozen solutions
1.6	1.2	100	Q	10	Dielectric ENDOR resonator
3	2.6	150	X	40	For split ring resonator
3.80	2.79	150	X	80	For ENDOR pulsed resonator, high precision wall thickness
4	3	250	X	250	For all CW resonators and MD5, low-dielectric solutions/solids only

Tubes of are for sale in ICL/F20a, and on the R12 Oracle purchasing system.

Sample Concentrations

Transition metals 1 - 5 mM

Organic radicals 20 - 200 mM

Solids 1×10^{15} to 1×10^{18} spins

Sample concentration vs. Spin concentration

Single Crystals – 1 x 10⁹ – auto goniometer

Equal concentrations, Equal noise, Different ESR signal width

Data Storage and Transfer

Storage

```
On the Spectrometers: Data is kept in .../xeprfiles/data/YourPl group/You/DateName/...
```

Back-Up: \\chem.ox.ac.uk\SRF\ESR\Spectrometer_DataBackup\...

→ But no guarantees, you are responsible for your data.

Transfer

File Transfer Protocal (FTP) is available on E580, E680, and EMXmicro

See: \\chem.ox.ac.uk\SRF\ESR\ NewUser_IntrosAndFAQ\FTP_FileTransfer_conversion.pdf

Data Processing Software

Windows, Mac and Linux:

Matlab - dept. - Data plotting, integration, spin quantitation, simulations Python, C, C++, Java, Fortran, MS Excel, etc. -free -

EasySpin – free, w/ Matlab - www.easyspin.org – simulation software

Spinach – free, w/ Matlab - www.spindynamics.org - simulation software

SpinDynamica – free, w/ Mathematica - www.spindynamica.org -

simulation software

+ many others

Windows:

SpinCount - \$ - Prof. M. Hendrich, Carnegie Mellon Univ. (not in CAESR)

Linux:

XSophe - \$\$\$\$ - Bruker BioSpin (not in CAESR)

User Resources

3rd year EPR practical

See: \\chem.ox.ac.uk\SRF\ESR

Video lecture links

Lecture course slides

Spectrometer Manuals

Stop by -or- questions by e-mail

- Main Reference Books -- RSL
 - Pulse EPR methods
 - Selected Systems
 - Instrumentation
- Conferences
- Organizations
- Databases and Software
- Spectrometer Makers
- List of 169 Reference Books

https://caesr.web.ox.ac.uk/home

Graduate Training Sessions

Morning \sim 10-12 pm

https://forms.office.com/e/zGrkuguJFQ

Explanation of webpage and online resources

Tour of ESR Facility

How to Set up cryogenics

How to use a Spectrometer

Send an interest e-mail to william.myers@chem.ox.ac.uk

Instrumentation description

Demonstration: CW-EPR & Pulsed EPR of LiPc

Pulsed ESR of BDPA: Electron-Nuclear DOuble Resonance

Afternoon $\sim 2:30$ to 5:00 pm

Demonstration: Transient ESR with LASER excitation

Double Electron-Electron Resonance

Bruker Pulsed EPR Course – group use of the spectrometer